1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
//! A widgetry application splits its state into two pieces: global shared state that lasts for the
//! entire lifetime of the application, and a stack of smaller states, only one of which is active
//! at a time. For example, imagine an application to view a map. The shared state would include
//! the map and pre-rendered geometry for it. The individual states might start with a splash
//! screen or menu to choose a map, then a map viewer, then maybe a state to drill down into pieces
//! of the map.
use abstutil::CloneableAny;
use crate::{Canvas, Color, EventCtx, GfxCtx, Outcome, Panel};
/// Any data that should last the entire lifetime of the application should be stored in the struct
/// implementing this trait.
pub trait SharedAppState {
/// Before `State::event` is called, call this.
fn before_event(&mut self) {}
/// When DrawBaselayer::DefaultDraw is called, run this.
fn draw_default(&self, _: &mut GfxCtx) {}
/// Will be called if `State::event` or `State::draw` panics.
fn dump_before_abort(&self, _: &Canvas) {}
/// Called before a normal exit, like window close
fn before_quit(&self, _: &Canvas) {}
/// If widgetry determines the video card is low on memory, this may be called. The application
/// should make its best effort to delete any unused Drawables.
fn free_memory(&mut self) {}
}
pub(crate) struct App<A: SharedAppState> {
/// A stack of states
pub(crate) states: Vec<Box<dyn State<A>>>,
pub(crate) shared_app_state: A,
}
impl<A: 'static + SharedAppState> App<A> {
pub(crate) fn event(&mut self, ctx: &mut EventCtx) {
self.shared_app_state.before_event();
let transition = self
.states
.last_mut()
.unwrap()
.event(ctx, &mut self.shared_app_state);
if self.execute_transition(ctx, transition) {
// Let the new state initialize with a fake event. Usually these just return
// Transition::Keep, but nothing stops them from doing whatever. (For example, entering
// tutorial mode immediately pushes on a Warper.) So just recurse.
ctx.no_op_event(true, |ctx| self.event(ctx));
}
}
pub(crate) fn draw(&self, g: &mut GfxCtx) {
let state = self.states.last().unwrap();
match state.draw_baselayer() {
DrawBaselayer::DefaultDraw => {
self.shared_app_state.draw_default(g);
}
DrawBaselayer::Custom => {}
DrawBaselayer::PreviousState => {
if self.states.len() >= 2 {
match self.states[self.states.len() - 2].draw_baselayer() {
DrawBaselayer::DefaultDraw => {
self.shared_app_state.draw_default(g);
}
DrawBaselayer::Custom => {}
// Don't recurse, but at least clear the screen, because the state is
// usually expecting the previous thing to happen.
DrawBaselayer::PreviousState => {
g.clear(Color::BLACK);
}
}
self.states[self.states.len() - 2].draw(g, &self.shared_app_state);
} else {
// I'm not entirely sure why this happens, but crashing isn't ideal.
warn!(
"A state requested DrawBaselayer::PreviousState, but it's the only state \
on the stack!"
);
g.clear(Color::BLACK);
}
}
}
state.draw(g, &self.shared_app_state);
}
/// If true, then the top-most state on the stack needs to be "woken up" with a fake mouseover
/// event.
fn execute_transition(&mut self, ctx: &mut EventCtx, transition: Transition<A>) -> bool {
match transition {
Transition::Keep => false,
Transition::KeepWithMouseover => true,
Transition::Pop => {
let mut state = self.states.pop().unwrap();
state.on_destroy(ctx, &mut self.shared_app_state);
if self.states.is_empty() {
if cfg!(target_arch = "wasm32") {
// Just kidding, don't actually leave.
self.states.push(state);
// TODO Once PopupMsg is lifted here, add an explanation
} else {
self.shared_app_state.before_quit(ctx.canvas);
std::process::exit(0);
}
}
true
}
Transition::ModifyState(cb) => {
cb(
self.states.last_mut().unwrap(),
ctx,
&mut self.shared_app_state,
);
true
}
Transition::ConsumeState(cb) => {
let mut last = self.states.pop().unwrap();
last.on_destroy(ctx, &mut self.shared_app_state);
let new_states = cb(last, ctx, &mut self.shared_app_state);
self.states.extend(new_states);
true
}
Transition::Push(state) => {
self.states.push(state);
true
}
Transition::Replace(state) => {
self.states
.pop()
.unwrap()
.on_destroy(ctx, &mut self.shared_app_state);
self.states.push(state);
true
}
Transition::Clear(states) => {
while !self.states.is_empty() {
self.states
.pop()
.unwrap()
.on_destroy(ctx, &mut self.shared_app_state);
}
self.states.extend(states);
true
}
Transition::Recreate => {
// TODO Don't call on_destroy?
let mut last = self.states.pop().unwrap();
let replacement = last.recreate(ctx, &mut self.shared_app_state);
self.states.push(replacement);
true
}
Transition::Multi(list) => {
// Always wake-up just the last state remaining after the sequence
for t in list {
self.execute_transition(ctx, t);
}
true
}
}
}
}
/// Before `State::draw` is called, draw something else.
pub enum DrawBaselayer {
/// Call `SharedAppState::draw_default`.
DefaultDraw,
/// Don't draw anything.
Custom,
/// Call the previous state's `draw`. This won't recurse, even if that state specifies
/// `PreviousState`.
PreviousState,
}
/// A temporary state of an application. There's a stack of these, with the most recent being the
/// active one.
pub trait State<A>: downcast_rs::Downcast {
/// Respond to a UI event, such as input or time passing.
fn event(&mut self, ctx: &mut EventCtx, shared_app_state: &mut A) -> Transition<A>;
/// Draw
fn draw(&self, g: &mut GfxCtx, shared_app_state: &A);
/// Specifies what to draw before draw()
fn draw_baselayer(&self) -> DrawBaselayer {
DrawBaselayer::DefaultDraw
}
/// Before this state is popped or replaced, call this.
fn on_destroy(&mut self, _: &mut EventCtx, _: &mut A) {}
// We don't need an on_enter -- the constructor for the state can just do it.
/// Respond to `Transition::Recreate` by assuming state in the app has changed, but preserving
/// the `State`-specific state appropriately.
fn recreate(&mut self, _: &mut EventCtx, _: &mut A) -> Box<dyn State<A>> {
panic!("This state hasn't implemented support for Transition::Recreate");
}
}
downcast_rs::impl_downcast!(State<A>);
/// When a state responds to an event, it can specify some way to manipulate the stack of states.
pub enum Transition<A> {
/// Don't do anything, keep the current state as the active one
Keep,
/// Keep the current state as the active one, but immediately call `event` again with a mouse
/// moved event
KeepWithMouseover,
/// Destroy the current state, and resume from the previous one
Pop,
/// If a state needs to pass data back to its parent, use this. In the callback, you have to
/// downcast the previous state to populate it with data.
ModifyState(Box<dyn FnOnce(&mut Box<dyn State<A>>, &mut EventCtx, &mut A)>),
/// This destroys the current state, running the callback on it, and pushes new states onto the
/// stack. The callback can consume the current state, thus salvaging fields from it without
/// cloning.
ConsumeState(
Box<dyn FnOnce(Box<dyn State<A>>, &mut EventCtx, &mut A) -> Vec<Box<dyn State<A>>>>,
),
/// Push a new active state on the top of the stack.
Push(Box<dyn State<A>>),
/// Replace the current state with a new one. Equivalent to Pop, then Push.
Replace(Box<dyn State<A>>),
/// Replace the entire stack of states with this stack.
Clear(Vec<Box<dyn State<A>>>),
/// Call `State::recreate` on the current top of the stack
Recreate,
/// Execute a sequence of transitions in order.
Multi(Vec<Transition<A>>),
}
/// Many states fit a pattern of managing a single panel, handling mouseover events, and other
/// interactions on the map. Implementing this instead of `State` reduces some boilerplate.
pub trait SimpleState<A> {
/// Called when something on the panel has been clicked. Since the action is just a string,
/// the fallback case can just use `unreachable!()`.
fn on_click(
&mut self,
ctx: &mut EventCtx,
app: &mut A,
action: &str,
panel: &mut Panel,
) -> Transition<A>;
/// Called when something on the panel has been clicked.
fn on_click_custom(
&mut self,
_ctx: &mut EventCtx,
_app: &mut A,
_action: Box<dyn CloneableAny>,
_panel: &mut Panel,
) -> Transition<A> {
Transition::Keep
}
/// Called when something on the panel has changed. If a transition is returned, stop handling
/// the event and immediately apply the transition.
fn panel_changed(
&mut self,
_: &mut EventCtx,
_: &mut A,
_: &mut Panel,
) -> Option<Transition<A>> {
None
}
/// Called when the mouse has moved.
fn on_mouseover(&mut self, _: &mut EventCtx, _: &mut A) {}
/// If a panel `on_click` event didn't occur and `panel_changed` didn't return transition, then
/// call this to handle all other events.
fn other_event(&mut self, _: &mut EventCtx, _: &mut A) -> Transition<A> {
Transition::Keep
}
fn draw(&self, _: &mut GfxCtx, _: &A) {}
fn draw_baselayer(&self) -> DrawBaselayer {
DrawBaselayer::DefaultDraw
}
}
impl<A: 'static> dyn SimpleState<A> {
pub fn new_state(panel: Panel, inner: Box<dyn SimpleState<A>>) -> Box<dyn State<A>> {
Box::new(SimpleStateWrapper { panel, inner })
}
}
pub struct SimpleStateWrapper<A> {
panel: Panel,
inner: Box<dyn SimpleState<A>>,
}
impl<A: 'static> State<A> for SimpleStateWrapper<A> {
fn event(&mut self, ctx: &mut EventCtx, app: &mut A) -> Transition<A> {
if ctx.redo_mouseover() {
self.inner.on_mouseover(ctx, app);
}
match self.panel.event(ctx) {
Outcome::Clicked(action) => self.inner.on_click(ctx, app, &action, &mut self.panel),
Outcome::ClickCustom(data) => {
self.inner.on_click_custom(ctx, app, data, &mut self.panel)
}
Outcome::Changed(_) => self
.inner
.panel_changed(ctx, app, &mut self.panel)
.unwrap_or_else(|| self.inner.other_event(ctx, app)),
Outcome::DragDropReleased(_, _, _) | Outcome::Focused(_) | Outcome::Nothing => {
self.inner.other_event(ctx, app)
}
}
}
fn draw(&self, g: &mut GfxCtx, app: &A) {
self.inner.draw(g, app);
// Draw last
self.panel.draw(g);
}
fn draw_baselayer(&self) -> DrawBaselayer {
self.inner.draw_baselayer()
}
}