1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use std::collections::{HashMap, HashSet};

use anyhow::Result;

use abstutil::Timer;
use geom::{Angle, Distance, FindClosest, HashablePt2D, Line, PolyLine, Polygon, Pt2D, Ring};
use raw_map::RawParkingLot;

use crate::make::{match_points_to_lanes, trim_path};
use crate::{
    osm, Map, ParkingLot, ParkingLotID, PathConstraints, Position, NORMAL_LANE_THICKNESS,
    PARKING_LOT_SPOT_LENGTH,
};

/// Take in parking lots from OSM and all parking aisle roads. Match parking lots to the nearest
/// sidewalk + driving lane, then automatically generate individual parking spots perpendicular to
/// the aisles.
pub fn make_all_parking_lots(
    input: &[RawParkingLot],
    aisles: &[(osm::WayID, Vec<Pt2D>)],
    map: &Map,
    timer: &mut Timer,
) -> Vec<ParkingLot> {
    timer.start("convert parking lots");
    let mut center_per_lot: Vec<HashablePt2D> = Vec::new();
    let mut query: HashSet<HashablePt2D> = HashSet::new();
    for lot in input {
        let center = lot.polygon.center().to_hashable();
        center_per_lot.push(center);
        query.insert(center);
    }

    let sidewalk_buffer = Distance::meters(7.5);
    let sidewalk_pts = match_points_to_lanes(
        map,
        query,
        |l| l.is_walkable(),
        sidewalk_buffer,
        Distance::meters(1000.0),
        timer,
    );

    let mut results = Vec::new();
    timer.start_iter("create parking lot driveways", center_per_lot.len());
    for (lot_center, orig) in center_per_lot.into_iter().zip(input.iter()) {
        timer.next();
        match snap_driveway(lot_center, &orig.polygon, &sidewalk_pts, map) {
            Ok((driveway_line, driving_pos, sidewalk_line, sidewalk_pos)) => {
                let id = ParkingLotID(results.len());
                results.push(ParkingLot {
                    id,
                    polygon: orig.polygon.clone(),
                    aisles: Vec::new(),
                    osm_id: orig.osm_id,
                    spots: Vec::new(),
                    extra_spots: 0,

                    driveway_line,
                    driving_pos,
                    sidewalk_line,
                    sidewalk_pos,
                });
            }
            Err(err) => {
                warn!("Skipping parking lot {}: {}", orig.osm_id, err);
            }
        }
    }
    info!(
        "Discarded {} parking lots that weren't close enough to a sidewalk",
        input.len() - results.len()
    );

    let mut closest: FindClosest<ParkingLotID> = FindClosest::new();
    for lot in &results {
        closest.add_polygon(lot.id, &lot.polygon);
    }
    timer.start_iter("match parking aisles", aisles.len());
    for (aisle_id, pts) in aisles {
        timer.next();
        // Use the center of all the aisle points to match it to lots
        let candidates: Vec<ParkingLotID> = closest
            .all_close_pts(Pt2D::center(pts), Distance::meters(500.0))
            .into_iter()
            .map(|(id, _, _)| id)
            .collect();

        match Ring::split_points(pts) {
            Ok((polylines, rings)) => {
                for pl in polylines {
                    for id in &candidates {
                        let lot = &mut results[id.0];
                        if let Some(segment) = lot.polygon.clip_polyline(&pl) {
                            lot.aisles.push(segment);
                            // A single aisle sometimes covers two adjacent parking lots -- like
                            // https://www.openstreetmap.org/way/688540935. So allow for all
                            // possible matches.
                        }
                    }
                }
                for ring in rings {
                    for id in &candidates {
                        let lot = &mut results[id.0];
                        if let Some(segment) = lot.polygon.clip_ring(&ring) {
                            lot.aisles.push(segment);
                        }
                    }
                }
            }
            Err(err) => {
                warn!("Parking aisle {} has weird geometry: {}", aisle_id, err);
            }
        }
    }

    let results = timer.parallelize("generate parking lot spots", results, |mut lot| {
        lot.spots = infer_spots(&lot.polygon, &lot.aisles);

        // Guess how many extra spots are available, that maybe aren't renderable.
        if lot.spots.is_empty() {
            // No parking aisles. Just guess based on the area. One spot per 30m^2 is a quick
            // guess from looking at examples with aisles.
            lot.extra_spots = (lot.polygon.area() / 30.0) as usize;
        }

        lot
    });
    timer.stop("convert parking lots");
    results
}

/// Returns (driveway_line, driving_pos, sidewalk_line, sidewalk_pos)
pub fn snap_driveway(
    center: HashablePt2D,
    polygon: &Polygon,
    sidewalk_pts: &HashMap<HashablePt2D, Position>,
    map: &Map,
) -> Result<(PolyLine, Position, Line, Position)> {
    let driveway_buffer = Distance::meters(7.0);

    let sidewalk_pos = sidewalk_pts
        .get(&center)
        .ok_or_else(|| anyhow!("parking lot center didn't snap to a sidewalk"))?;
    let sidewalk_line = match Line::new(center.to_pt2d(), sidewalk_pos.pt(map)) {
        Ok(l) => trim_path(polygon, l),
        Err(_) => {
            bail!("front path has 0 length");
        }
    };

    // Can this lot have a driveway? If it's not next to a driving lane, then no.
    let mut driveway: Option<(PolyLine, Position)> = None;
    let sidewalk_lane = sidewalk_pos.lane();
    if let Some(driving_pos) = map
        .get_parent(sidewalk_lane)
        .find_closest_lane(sidewalk_lane, |l| PathConstraints::Car.can_use(l, map))
        .and_then(|l| {
            sidewalk_pos
                .equiv_pos(l, map)
                .buffer_dist(driveway_buffer, map)
        })
    {
        if let Ok(pl) = PolyLine::new(vec![
            sidewalk_line.pt1(),
            sidewalk_line.pt2(),
            driving_pos.pt(map),
        ]) {
            driveway = Some((pl, driving_pos));
        }
    }
    let (driveway_line, driving_pos) = driveway.ok_or_else(|| {
        anyhow!(
            "snapped to sidewalk {}, but no driving connection",
            sidewalk_pos.lane()
        )
    })?;
    Ok((driveway_line, driving_pos, sidewalk_line, *sidewalk_pos))
}

fn infer_spots(lot_polygon: &Polygon, aisles: &[Vec<Pt2D>]) -> Vec<(Pt2D, Angle)> {
    let mut spots = Vec::new();
    let mut finalized_lines = Vec::new();

    for aisle in aisles {
        let aisle_thickness = NORMAL_LANE_THICKNESS / 2.0;
        let pl = PolyLine::unchecked_new(aisle.clone());

        for rotate in [90.0, -90.0] {
            // Blindly generate all of the lines
            let lines = {
                let mut lines = Vec::new();
                let mut start = Distance::ZERO;
                while start + NORMAL_LANE_THICKNESS < pl.length() {
                    let (pt, angle) = pl.must_dist_along(start);
                    start += NORMAL_LANE_THICKNESS;
                    let theta = angle.rotate_degs(rotate);
                    lines.push(Line::must_new(
                        pt.project_away(aisle_thickness / 2.0, theta),
                        pt.project_away(aisle_thickness / 2.0 + PARKING_LOT_SPOT_LENGTH, theta),
                    ));
                }
                lines
            };

            for pair in lines.windows(2) {
                let l1 = &pair[0];
                let l2 = &pair[1];
                if let Ok(back) = Line::new(l1.pt2(), l2.pt2()) {
                    if l1.intersection(l2).is_none()
                        && l1.angle().approx_eq(l2.angle(), 5.0)
                        && line_valid(lot_polygon, aisles, l1, &finalized_lines)
                        && line_valid(lot_polygon, aisles, l2, &finalized_lines)
                        && line_valid(lot_polygon, aisles, &back, &finalized_lines)
                    {
                        let avg_angle = Angle::average(vec![l1.angle(), l2.angle()]);
                        spots.push((back.middle().unwrap(), avg_angle.opposite()));
                        finalized_lines.push(l1.clone());
                        finalized_lines.push(l2.clone());
                        finalized_lines.push(back);
                    }
                }
            }
        }
    }
    spots
}

fn line_valid(
    lot_polygon: &Polygon,
    aisles: &[Vec<Pt2D>],
    line: &Line,
    finalized_lines: &[Line],
) -> bool {
    // Don't leak out of the parking lot
    // TODO Entire line
    if !lot_polygon.contains_pt(line.pt1()) || !lot_polygon.contains_pt(line.pt2()) {
        return false;
    }

    // Don't let this line hit another line
    if finalized_lines.iter().any(|other| line.crosses(other)) {
        return false;
    }

    // Don't hit an aisle
    if aisles.iter().any(|pts| {
        PolyLine::unchecked_new(pts.clone())
            .intersection(&line.to_polyline())
            .is_some()
    }) {
        return false;
    }

    true
}