1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
//! Structures related to the new road-based pathfinding
//! (https://github.com/a-b-street/abstreet/issues/555) live here. When the transition is done,
//! things here will probably move into pathfind/mod.rs.
use anyhow::Result;
use serde::{Deserialize, Serialize};
use geom::{Duration, Polygon, Ring, Speed};
use crate::pathfind::uber_turns::UberTurnV2;
use crate::{
osm, DirectedRoadID, Direction, IntersectionID, LaneID, Map, MovementID, Path, PathConstraints,
PathRequest, PathStep, RoadID, TurnID, UberTurn,
};
/// One step along a path.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum PathStepV2 {
/// Original direction
Along(DirectedRoadID),
/// Opposite direction, sidewalks only
Contraflow(DirectedRoadID),
Movement(MovementID),
ContraflowMovement(MovementID),
}
/// A path between two endpoints for a particular mode. This representation is immutable and doesn't
/// prescribe specific lanes and turns to follow.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct PathV2 {
steps: Vec<PathStepV2>,
// TODO There will be a PathRequestV2, but I'm not sure how it'll change yet.
req: PathRequest,
cost: Duration,
// TODO Temporarily we'll keep plumbing these along for path_v2_to_v1 to work, but we'll
// probably just discover uber-turns lazily at the simulation layer instead.
uber_turns: Vec<UberTurnV2>,
// If alt_start was used, this may differ from req.start.lane()
orig_start_lane: LaneID,
}
impl PathV2 {
pub(crate) fn new(
map: &Map,
steps: Vec<PathStepV2>,
mut req: PathRequest,
cost: Duration,
uber_turns: Vec<UberTurnV2>,
) -> PathV2 {
let orig_start_lane = req.start.lane();
// If we had two possible start positions, figure out which one we wound up using
// TODO Doesn't make sense for pedestrians yet
if req.constraints != PathConstraints::Pedestrian {
if let Some((pos, _)) = req.alt_start {
if let PathStepV2::Along(dr) = steps[0] {
if map.get_l(req.start.lane()).get_directed_parent() == dr {
// We used the original side, fine. No need to preserve this.
} else {
assert_eq!(map.get_l(pos.lane()).get_directed_parent(), dr);
req.start = pos;
}
req.alt_start = None;
} else {
unreachable!()
}
}
}
// TODO Port validate_continuity and validate_restrictions?
PathV2 {
steps,
req,
cost,
uber_turns,
orig_start_lane,
}
}
/// Vehicle implementations often just calculate the sequence of roads. Turn that into
/// PathStepV2 here.
pub fn from_roads(
mut roads: Vec<DirectedRoadID>,
req: PathRequest,
cost: Duration,
uber_turns: Vec<UberTurnV2>,
map: &Map,
) -> PathV2 {
let mut steps = Vec::new();
for pair in roads.windows(2) {
steps.push(PathStepV2::Along(pair[0]));
steps.push(PathStepV2::Movement(MovementID {
from: pair[0],
to: pair[1],
parent: pair[0].dst_i(map),
crosswalk: false,
}));
}
steps.push(PathStepV2::Along(roads.pop().unwrap()));
PathV2::new(map, steps, req, cost, uber_turns)
}
/// The original PathRequest used to produce this path.
pub fn get_req(&self) -> &PathRequest {
&self.req
}
/// All steps in this path.
pub fn get_steps(&self) -> &Vec<PathStepV2> {
&self.steps
}
/// The time needed to perform this path. This time is not a lower bound; physically following
/// the path might be faster. This time incorporates costs like using sub-optimal lanes, taking
/// difficult turns, and crossing private roads (which are modelled with a large penalty!)
pub fn get_cost(&self) -> Duration {
self.cost
}
/// Estimate how long following the path will take in the best case, assuming no traffic, delay
/// at intersections, elevation, or penalties for crossing private roads. To determine the
/// speed along each step, the agent's optional max_speed must be known.
///
/// TODO Hack. The one use of this actually needs to apply main_road_penalty. We want to omit
/// some penalties, but use others. Come up with a better way of expressing this.
pub fn estimate_duration(
&self,
map: &Map,
max_speed: Option<Speed>,
main_road_penalty: Option<f64>,
) -> Duration {
let mut total = Duration::ZERO;
for step in &self.steps {
let (dist, mut speed);
let mut multiplier = 1.0;
match step {
PathStepV2::Along(dr) | PathStepV2::Contraflow(dr) => {
let road = map.get_r(dr.road);
dist = road.length();
speed = road.speed_limit;
if let Some(penalty) = main_road_penalty {
if road.get_rank() != osm::RoadRank::Local {
multiplier = penalty;
}
}
}
PathStepV2::Movement(m) | PathStepV2::ContraflowMovement(m) => {
if let Some(movement) = map.get_movement(*m) {
dist = movement.geom.length();
speed = map
.get_r(m.from.road)
.speed_limit
.min(map.get_r(m.to.road).speed_limit);
} else {
// Assume it's a SharedSidewalkCorner and just skip
continue;
}
}
}
if let Some(max) = max_speed {
speed = speed.min(max);
}
total += multiplier * (dist / speed);
}
total
}
/// Transform a sequence of roads representing a path into the current lane-based path, by
/// picking particular lanes and turns to use.
pub fn into_v1(mut self, map: &Map) -> Result<Path> {
if self.req.constraints == PathConstraints::Pedestrian {
return self.into_v1_walking(map);
}
// This is a somewhat brute-force method: run Dijkstra's algorithm on a graph of lanes and
// turns, but only build the graph along the path of roads we've already found. This handles
// arbitrary lookahead needed, and forces use of the original start/end lanes requested.
let mut graph = petgraph::graphmap::DiGraphMap::new();
for step in &self.steps {
if let PathStepV2::Movement(mvmnt) = step {
for src in mvmnt.from.lanes(self.req.constraints, map) {
for dst in mvmnt.to.lanes(self.req.constraints, map) {
let turn = TurnID {
parent: map.get_l(src).dst_i,
src,
dst,
};
if map.maybe_get_t(turn).is_some() {
graph.add_edge(src, dst, turn);
}
}
}
}
}
// The v2 path might immediately require a turn that's only available from some lanes. If
// the req.start lane can't make that turn, then producing the v1 path would fail. So let's
// allow starting from any lane on the same side of the road. Since petgraph can only start
// from a single node and since we want to prefer the originally requested lane anyway,
// create a virtual start node and connect it to all possible starting lanes.
let virtual_start_node = LaneID {
road: RoadID(map.all_roads().len()),
offset: 0,
};
let start_lane = self.req.start.lane();
let start_road = map.get_parent(start_lane);
let start_lane_idx = start_lane.offset as isize;
for l in map
.get_l(start_lane)
.get_directed_parent()
.lanes(self.req.constraints, map)
{
// Heavily penalize starting from something other than the originally requested lane.
// At the simulation layer, we may need to block intermediate lanes to exit a driveway,
// so reflect that cost here. The high cost should only be worth it when the v2 path
// requires that up-front turn from certain lanes.
//
// TODO This is only valid if we were leaving from a driveway! This is making some
// buses warp after making a stop.
let idx_dist = (start_lane_idx - (l.offset as isize)).abs();
let cost = 100 * idx_dist as usize;
let fake_turn = TurnID {
// Just encode the cost here for convenience
parent: IntersectionID(cost),
src: virtual_start_node,
dst: virtual_start_node,
};
graph.add_edge(virtual_start_node, l, fake_turn);
}
match petgraph::algo::astar(
&graph,
virtual_start_node,
|l| l == self.req.end.lane(),
|(_, _, t)| {
if t.src == virtual_start_node {
return t.parent.0;
}
// Normally opportunistic lane-changing adjusts the path live, but that doesn't work
// near uber-turns. So still use some of the penalties here.
let (lt, lc, slow_lane) = map.get_t(*t).penalty(self.req.constraints, map);
let mut extra_penalty = lt + lc;
if self.req.constraints == PathConstraints::Bike {
extra_penalty += slow_lane;
}
// Always treat every lane/turn as at least cost 1; otherwise A* can't understand
// that a final path with 10 steps costs more than one with 5. The
// road-based pathfinding has already chosen the overall route; when
// we're picking individual lanes, the length of each lane along one
// road is going to be about the same.
let base = 1;
base + extra_penalty
},
|_| 0,
) {
Some((_, path)) => {
let mut steps = Vec::new();
// Skip the first node; it's always virtual_start_node
assert_eq!(path[0], virtual_start_node);
for pair in path.windows(2) {
if pair[0] == virtual_start_node {
continue;
}
steps.push(PathStep::Lane(pair[0]));
// We don't need to look for this turn in the map; we know it exists.
steps.push(PathStep::Turn(TurnID {
parent: map.get_l(pair[0]).dst_i,
src: pair[0],
dst: pair[1],
}));
}
steps.push(PathStep::Lane(self.req.end.lane()));
let mut blocked_starts = Vec::new();
if steps[0] != PathStep::Lane(self.orig_start_lane) {
let actual_start = match steps[0] {
PathStep::Lane(l) => l,
_ => unreachable!(),
};
blocked_starts.push(self.orig_start_lane);
blocked_starts
.extend(start_road.get_lanes_between(self.orig_start_lane, actual_start));
// Sometimes a no-op for exiting off-side
self.req.start = self.req.start.equiv_pos(actual_start, map);
}
let uber_turns = find_uber_turns(&steps, map, self.uber_turns);
Ok(Path::new(map, steps, self.req, uber_turns, blocked_starts))
}
None => bail!(
"Can't transform a road-based path to a lane-based path for {}",
self.req
),
}
}
fn into_v1_walking(self, map: &Map) -> Result<Path> {
let mut steps = Vec::new();
for step in self.steps {
steps.push(match step {
PathStepV2::Along(r) => PathStep::Lane(r.must_get_sidewalk(map)),
PathStepV2::Contraflow(r) => PathStep::ContraflowLane(r.must_get_sidewalk(map)),
PathStepV2::Movement(mvmnt) => PathStep::Turn(TurnID {
src: mvmnt.from.must_get_sidewalk(map),
dst: mvmnt.to.must_get_sidewalk(map),
parent: mvmnt.parent,
}),
PathStepV2::ContraflowMovement(mvmnt) => PathStep::ContraflowTurn(TurnID {
src: mvmnt.from.must_get_sidewalk(map),
dst: mvmnt.to.must_get_sidewalk(map),
parent: mvmnt.parent,
}),
});
}
Ok(Path::new(map, steps, self.req, Vec::new(), Vec::new()))
}
pub fn crosses_road(&self, r: RoadID) -> bool {
self.steps.iter().any(|step| match step {
PathStepV2::Along(dr) => dr.road == r,
_ => false,
})
}
/// Draws the thickened path, matching entire roads. Ignores the path's exact starting and
/// ending distance. Doesn't handle contraflow yet.
pub fn trace_v2(&self, map: &Map) -> Result<Polygon> {
let mut left_pts = Vec::new();
let mut right_pts = Vec::new();
for step in &self.steps {
match step {
PathStepV2::Along(dr) => {
let road = map.get_r(dr.road);
let width = road.get_half_width();
if dr.dir == Direction::Fwd {
left_pts.extend(road.center_pts.shift_left(width)?.into_points());
right_pts.extend(road.center_pts.shift_right(width)?.into_points());
} else {
left_pts
.extend(road.center_pts.shift_right(width)?.reversed().into_points());
right_pts
.extend(road.center_pts.shift_left(width)?.reversed().into_points());
}
}
PathStepV2::Contraflow(_) => todo!(),
// Just make a straight line across the intersection. It'd be fancier to try and
// trace along.
PathStepV2::Movement(_) | PathStepV2::ContraflowMovement(_) => {}
}
}
right_pts.reverse();
left_pts.extend(right_pts);
left_pts.push(left_pts[0]);
Ok(Ring::deduping_new(left_pts)?.into_polygon())
}
/// Returns polygons covering the entire path. Ignores the path's exact starting and ending
/// distance.
pub fn trace_all_polygons(&self, map: &Map) -> Vec<Polygon> {
let mut polygons = Vec::new();
for step in &self.steps {
match step {
PathStepV2::Along(dr) | PathStepV2::Contraflow(dr) => {
polygons.push(map.get_r(dr.road).get_thick_polygon());
}
PathStepV2::Movement(m) | PathStepV2::ContraflowMovement(m) => {
polygons.push(map.get_i(m.parent).polygon.clone());
}
}
}
polygons
}
}
fn find_uber_turns(
steps: &[PathStep],
map: &Map,
mut uber_turns_v2: Vec<UberTurnV2>,
) -> Vec<UberTurn> {
// Pathfinding v1 needs to know the uber turns that the path crosses, for the simulation layer.
// Since we now construct the path in two stages, it's easiest to just reconstruct the uber
// turns after building the lane-based path.
let num_uts = uber_turns_v2.len();
let mut result = Vec::new();
let mut current_ut = Vec::new();
for step in steps {
// Optimization
if uber_turns_v2.is_empty() {
break;
}
if let PathStep::Turn(t) = step {
if current_ut.is_empty()
&& uber_turns_v2[0].path[0].from == map.get_l(t.src).get_directed_parent()
{
current_ut.push(*t);
}
if !current_ut.is_empty() {
if current_ut.last() != Some(t) {
current_ut.push(*t);
}
if uber_turns_v2[0].path[0].to == map.get_l(t.dst).get_directed_parent() {
result.push(UberTurn {
path: current_ut.drain(..).collect(),
});
uber_turns_v2.remove(0);
}
}
}
}
assert!(current_ut.is_empty());
assert_eq!(num_uts, result.len());
result
}