1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
use std::collections::{BTreeMap, HashSet};
use anyhow::Result;
use lyon::geom::{CubicBezierSegment, Point, QuadraticBezierSegment};
use geom::{PolyLine, Pt2D};
use crate::{
map::turn_type_from_road_geom, Intersection, Lane, LaneID, LaneType, Map, RoadID, Turn, TurnID,
TurnType,
};
/// Generate all driving and walking turns at an intersection, accounting for OSM turn restrictions.
pub fn make_all_turns(map: &Map, i: &Intersection) -> Vec<Turn> {
let mut raw_turns: Vec<Turn> = Vec::new();
raw_turns.extend(make_vehicle_turns(i, map));
raw_turns.extend(crate::make::walking_turns::filter_turns(
crate::make::walking_turns::make_walking_turns(map, i),
map,
i,
));
let unique_turns = ensure_unique(raw_turns);
// Never allow turns that go against road-level turn restrictions; that upstream OSM data is
// usually not extremely broken.
let all_turns: Vec<Turn> = unique_turns
.into_iter()
.filter(|t| t.permitted_by_road(i, map))
.collect();
// Try to use turn lane tags...
let filtered_turns: Vec<Turn> = all_turns
.clone()
.into_iter()
.filter(|t| t.permitted_by_lane(map))
.collect();
// And remove merging left or right turns. If we wanted to remove the "lane-changing at
// intersections" behavior, we could do this for TurnType::Straight too.
let filtered_turns = remove_merging_turns(map, filtered_turns, TurnType::Right);
let mut filtered_turns = remove_merging_turns(map, filtered_turns, TurnType::Left);
if i.merged {
filtered_turns.retain(|turn| {
if turn.turn_type == TurnType::UTurn {
let src_lane = map.get_l(turn.id.src);
// U-turns at divided highways are sometimes legal (and a common movement --
// https://www.openstreetmap.org/way/361443212), so let OSM turn:lanes override.
if src_lane
.get_lane_level_turn_restrictions(map.get_r(src_lane.id.road), false)
.map(|set| !set.contains(&TurnType::UTurn))
.unwrap_or(true)
{
warn!("Removing u-turn from merged intersection: {}", turn.id);
false
} else {
true
}
} else {
true
}
});
}
// But then see how all of that filtering affects lane connectivity.
match verify_vehicle_connectivity(&filtered_turns, i, map) {
Ok(()) => filtered_turns,
Err(err) => {
warn!("Not filtering turns. {}", err);
all_turns
}
}
}
fn ensure_unique(turns: Vec<Turn>) -> Vec<Turn> {
let mut ids = HashSet::new();
let mut keep: Vec<Turn> = Vec::new();
for t in turns.into_iter() {
if ids.contains(&t.id) {
// TODO This was once an assertion, but disabled for
// https://github.com/a-b-street/abstreet/issues/84. A crosswalk gets created twice
// and deduplicated here. Not sure why it was double-created in the first place.
warn!("Duplicate turns {}!", t.id);
} else {
ids.insert(t.id);
keep.push(t);
}
}
keep
}
/// Ideally, we want every incoming lane to lead to at least one lane of the same type, and every
/// outgoing lane to be reachable by at least one lane of the same type. But if it's a bus or bike
/// lane, settle for being connected to anything -- even just a driving lane. There's naturally
/// places where these dedicated lanes start and end.
///
/// Why is this definition strict for driving lanes connected to other driving lanes? See
/// https://www.openstreetmap.org/node/491979474 for a motivating example. When a dedicated bike
/// path crosses a road with turn restrictions marked on a segment before the intersection, the
/// turn restrictions _probably_ indicate the vehicle movements allowed further on, and _don't_
/// describe the turns between the road and the trail.
pub fn verify_vehicle_connectivity(turns: &[Turn], i: &Intersection, map: &Map) -> Result<()> {
let mut incoming_missing: HashSet<LaneID> = HashSet::new();
for l in &i.incoming_lanes {
if map.get_l(*l).lane_type.is_for_moving_vehicles() {
incoming_missing.insert(*l);
}
}
let mut outgoing_missing: HashSet<LaneID> = HashSet::new();
for l in &i.outgoing_lanes {
if map.get_l(*l).lane_type.is_for_moving_vehicles() {
outgoing_missing.insert(*l);
}
}
for turn in turns {
let src_lt = map.get_l(turn.id.src).lane_type;
let dst_lt = map.get_l(turn.id.dst).lane_type;
if src_lt == dst_lt {
incoming_missing.remove(&turn.id.src);
outgoing_missing.remove(&turn.id.dst);
}
if src_lt == LaneType::Biking || src_lt == LaneType::Bus {
incoming_missing.remove(&turn.id.src);
}
if dst_lt == LaneType::Biking || dst_lt == LaneType::Bus {
outgoing_missing.remove(&turn.id.dst);
}
}
if !incoming_missing.is_empty() || !outgoing_missing.is_empty() {
bail!(
"Turns for {} orphan some lanes. Incoming: {:?}, outgoing: {:?}",
i.id,
incoming_missing,
outgoing_missing
);
}
Ok(())
}
fn make_vehicle_turns(i: &Intersection, map: &Map) -> Vec<Turn> {
let mut turns = Vec::new();
// Just generate every possible combination of turns between incoming and outgoing lanes.
let is_deadend = i.is_deadend_for_driving(map);
for src in &i.incoming_lanes {
let src = map.get_l(*src);
if !src.lane_type.is_for_moving_vehicles() {
continue;
}
for dst in &i.outgoing_lanes {
let dst = map.get_l(*dst);
if !dst.lane_type.is_for_moving_vehicles() {
continue;
}
// Only allow U-turns at deadends
if src.id.road == dst.id.road && !is_deadend {
continue;
}
// Can't go between light rail and normal roads
if src.is_light_rail() != dst.is_light_rail() {
continue;
}
if src.last_pt() == dst.first_pt() {
warn!(
"No turn from {} to {}; the endpoints are the same",
src.id, dst.id
);
continue;
}
let turn_type = turn_type_from_lane_geom(src, dst, i, map);
let geom = curvey_turn(src, dst, i)
.unwrap_or_else(|_| PolyLine::must_new(vec![src.last_pt(), dst.first_pt()]));
turns.push(Turn {
id: TurnID {
parent: i.id,
src: src.id,
dst: dst.id,
},
turn_type,
geom,
});
}
}
turns
}
fn turn_type_from_lane_geom(src: &Lane, dst: &Lane, i: &Intersection, map: &Map) -> TurnType {
turn_type_from_road_geom(
map.get_r(src.id.road),
src.last_line().angle(),
map.get_r(dst.id.road),
dst.last_line().angle(),
i,
map,
)
}
fn curvey_turn(src: &Lane, dst: &Lane, i: &Intersection) -> Result<PolyLine> {
fn to_pt(pt: Pt2D) -> Point<f64> {
Point::new(pt.x(), pt.y())
}
fn from_pt(pt: Point<f64>) -> Pt2D {
Pt2D::new(pt.x, pt.y)
}
// The control points are straight out/in from the source/destination lanes, so
// that the car exits and enters at the same angle as the road.
let src_line = src.last_line();
let dst_line = dst.first_line();
let src_pt = src.last_pt();
let dst_pt = dst.first_pt();
let src_angle = src_line.angle();
let dst_angle = dst_line.angle();
let intersection = src_line
.infinite()
.intersection(&dst_line.infinite())
.unwrap_or(src_pt);
let curve =
// U-turns and straight turns
if src_angle.approx_parallel(dst_angle, 5.0)
// Zero length intersections (this results in PolyLine::new returning none)
|| src_pt.approx_eq(intersection, geom::EPSILON_DIST)
|| dst_pt.approx_eq(intersection, geom::EPSILON_DIST)
// Weirdly shaped intersections where the lane lines intersect outside the intersection
|| !i.polygon.contains_pt(intersection)
{
// All get a curve scaled to the distance between the points
CubicBezierSegment {
from: to_pt(src_pt),
ctrl1: to_pt(src_pt.project_away(src_pt.dist_to(dst_pt) / 2.0, src_angle)),
ctrl2: to_pt(dst_pt.project_away(src_pt.dist_to(dst_pt) / 2.0, dst_angle.opposite())),
to: to_pt(dst_pt),
}
} else {
// Regular intersections get a quadratic bezier curve
QuadraticBezierSegment {
from: to_pt(src_pt),
ctrl: to_pt(intersection),
to: to_pt(dst_pt),
}.to_cubic()
};
let pieces = 5;
let mut curve: Vec<Pt2D> = (0..=pieces)
.map(|i| from_pt(curve.sample(1.0 / f64::from(pieces) * f64::from(i))))
.collect();
curve.dedup();
PolyLine::new(curve)
}
fn remove_merging_turns(map: &Map, input: Vec<Turn>, turn_type: TurnType) -> Vec<Turn> {
let mut turns = Vec::new();
// Group turns of the specified type by (from, to) road
let mut pairs: BTreeMap<(RoadID, RoadID), Vec<Turn>> = BTreeMap::new();
for t in input {
// Only do this for driving lanes
if !map.get_l(t.id.src).is_driving() || !map.get_l(t.id.dst).is_driving() {
turns.push(t);
continue;
}
if t.turn_type == turn_type {
pairs
.entry((t.id.src.road, t.id.dst.road))
.or_insert_with(Vec::new)
.push(t);
} else {
// Other turn types always pass through
turns.push(t);
}
}
for (_, group) in pairs {
if group.len() == 1 {
turns.extend(group);
continue;
}
let num_src_lanes = group.iter().map(|t| t.id.src).collect::<HashSet<_>>().len();
let num_dst_lanes = group.iter().map(|t| t.id.dst).collect::<HashSet<_>>().len();
// Allow all turns from one to many
if num_src_lanes == 1 {
turns.extend(group);
continue;
}
// If the number of source and destination lanes is the same, match them up in order,
// without any crossing.
if num_src_lanes == num_dst_lanes {
// But we want to match things up -- leftmost turn lane leads to leftmost destination.
let mut src_lanes_in_order: Vec<LaneID> = group.iter().map(|t| t.id.src).collect();
src_lanes_in_order.sort_by_key(|l| map.get_parent(*l).dir_and_offset(*l).1);
let mut dst_lanes_in_order: Vec<LaneID> = group.iter().map(|t| t.id.dst).collect();
dst_lanes_in_order.sort_by_key(|l| map.get_parent(*l).dir_and_offset(*l).1);
for t in group {
let src_order = src_lanes_in_order
.iter()
.position(|l| t.id.src == *l)
.unwrap();
let dst_order = dst_lanes_in_order
.iter()
.position(|l| t.id.dst == *l)
.unwrap();
if src_order == dst_order {
turns.push(t);
}
}
continue;
}
// If src < dst and src isn't 1, then one source lane gets to access multiple destination
// lanes. For now, just give up figuring this out, and allow all combinations.
//
// TODO https://wiki.openstreetmap.org/wiki/Relation:connectivity may have hints about a
// better algorithm.
if num_src_lanes < num_dst_lanes {
turns.extend(group);
continue;
}
// If we get here, then multiple source lanes are forced to merge into one destination
// lane.
//
// Just kind of give up on these cases for now, and fall-back to only allowing the leftmost
// or rightmost source lane to make these turns.
//
// That left or rightmost lane can turn into all lanes on the destination road. Tempting to
// remove this, but it may remove some valid U-turn movements (like on Mercer).
let road = map.get_parent(group[0].id.src);
let src = if turn_type == TurnType::Right {
group
.iter()
.max_by_key(|t| road.dir_and_offset(t.id.src).1)
.unwrap()
.id
.src
} else if turn_type == TurnType::Left {
group
.iter()
.min_by_key(|t| road.dir_and_offset(t.id.src).1)
.unwrap()
.id
.src
} else {
unreachable!()
};
for t in group {
if t.id.src == src {
turns.push(t);
}
}
}
turns
}