ltn/logic/shortcuts.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
use std::collections::{BTreeSet, HashSet};
use abstutil::{Counter, Timer};
use map_gui::tools::ColorNetwork;
use map_model::{
DirectedRoadID, IntersectionID, LaneID, Map, PathConstraints, PathRequest, PathStepV2, PathV2,
Pathfinder, Position, RoadID,
};
use widgetry::GeomBatch;
use crate::{App, Cell, Neighbourhood};
pub struct Shortcuts {
pub paths: Vec<PathV2>,
pub count_per_road: Counter<RoadID>,
pub count_per_intersection: Counter<IntersectionID>,
}
impl Shortcuts {
// For temporary use
pub fn empty() -> Self {
Self {
paths: Vec::new(),
count_per_road: Counter::new(),
count_per_intersection: Counter::new(),
}
}
pub fn new(map: &Map, neighbourhood: &Neighbourhood, timer: &mut Timer) -> Self {
// The overall approach: look for all possible paths from an entrance to an exit, only if they
// connect to different major roads.
//
// But an entrance and exit to _what_? If we try to route from the entrance to one cell to the
// exit of another, then the route will make strange U-turns and probably use the perimeter. By
// definition, two cells aren't reachable without using the perimeter. So restrict our search
// to pairs of entrances/exits in the _same_ cell.
let mut requests = Vec::new();
for cell in &neighbourhood.cells {
let entrances = find_entrances_or_exits(map, neighbourhood, cell, true);
let exits = find_entrances_or_exits(map, neighbourhood, cell, false);
for entrance in &entrances {
for exit in &exits {
// Most of the time, an entrance/exit connects to only "one" major road. But where
// a road name changes, or two major roads meet, we'll have multiple. If two
// corners meet and share one main road, still consider that a shortcut -- it might
// be a "false positive" or there could be some legitimate reason for a driver to
// attempt the shortcut.
if entrance.major_road_names != exit.major_road_names {
requests.push(PathRequest::vehicle(
Position::start(entrance.lane),
Position::end(exit.lane, map),
PathConstraints::Car,
));
}
}
}
}
// Short-circuit for performance. This happens for "degenerate" neighbourhoods without any
// internal roads, usually near the map edge, between dual carriageways, etc.
if requests.is_empty() {
return Self::empty();
}
let mut params = map.routing_params_respecting_modal_filters();
// Restrict the pathfinding to the interior of the neighbourhood only. Don't allow using
// perimeter roads or leaving and re-entering at all.
//
// The point of this view is to show possible detours people might try to take in response to
// one filter. Note the original "demand model" input is bogus anyway; it's all possible
// entrances and exits to the neighbourhood, without regards for the larger path somebody
// actually wants to take.
params.only_use_roads = neighbourhood.interior_roads.clone();
// Also can't use private roads
for r in &neighbourhood.interior_roads {
if !crate::is_driveable(map.get_r(*r), map) {
params.avoid_roads.insert(*r);
}
}
// TODO Perf: when would it be worth creating a CH? Especially if we could subset just this
// part of the graph, it'd probably be helpful.
let pathfinder = Pathfinder::new_dijkstra(map, params, vec![PathConstraints::Car], timer);
let paths: Vec<PathV2> = timer
.parallelize(
"calculate paths between entrances and exits",
requests,
|req| pathfinder.pathfind_v2(req, map),
)
.into_iter()
.flatten()
.collect();
// TODO Rank the likeliness of each shortcut by
// 1) Calculating a path between similar start/endpoints -- travelling along the perimeter,
// starting and ending on a specific road that makes sense. (We have to pick the 'direction'
// along the perimeter roads that's sensible.)
// 2) Comparing that time to the time for cutting through
Shortcuts::from_paths(neighbourhood, paths)
}
pub fn from_paths(neighbourhood: &Neighbourhood, paths: Vec<PathV2>) -> Self {
// How many shortcuts pass through each street?
let mut count_per_road = Counter::new();
let mut count_per_intersection = Counter::new();
for path in &paths {
for step in path.get_steps() {
match step {
PathStepV2::Along(dr) => {
if neighbourhood.interior_roads.contains(&dr.road) {
count_per_road.inc(dr.road);
}
}
PathStepV2::Movement(m) => {
if neighbourhood.interior_intersections.contains(&m.parent) {
count_per_intersection.inc(m.parent);
}
}
// Car paths don't make contraflow movements
_ => unreachable!(),
}
}
}
Self {
paths,
count_per_road,
count_per_intersection,
}
}
pub fn quiet_and_total_streets(&self, neighbourhood: &Neighbourhood) -> (usize, usize) {
let quiet_streets = neighbourhood
.interior_roads
.iter()
.filter(|r| self.count_per_road.get(**r) == 0)
.count();
let total_streets = neighbourhood.interior_roads.len();
(quiet_streets, total_streets)
}
pub fn subset(&self, neighbourhood: &Neighbourhood, r: RoadID) -> Self {
let paths = self
.paths
.iter()
.filter(|path| path.crosses_road(r))
.cloned()
.collect();
Self::from_paths(neighbourhood, paths)
}
pub fn draw_heatmap(&self, app: &App) -> GeomBatch {
let mut colorer = ColorNetwork::no_fading(app);
colorer.ranked_roads(self.count_per_road.clone(), &app.cs.good_to_bad_red);
// TODO These two will be on different scales, which may look weird
colorer.ranked_intersections(self.count_per_intersection.clone(), &app.cs.good_to_bad_red);
colorer.draw.unzoomed
}
}
struct EntryExit {
// Really this is a DirectedRoadID, but since the pathfinding request later needs to know
// lanes, just use this
lane: LaneID,
major_road_names: BTreeSet<String>,
}
fn find_entrances_or_exits(
map: &Map,
neighbourhood: &Neighbourhood,
cell: &Cell,
entrances: bool,
) -> Vec<EntryExit> {
let mut entry_exits = Vec::new();
for i in &cell.borders {
let major_road_names = find_major_road_names(map, neighbourhood, *i);
let mut seen: HashSet<DirectedRoadID> = HashSet::new();
let lanes = if entrances {
map.get_i(*i).get_outgoing_lanes(map, PathConstraints::Car)
} else {
map.get_i(*i).get_incoming_lanes(map, PathConstraints::Car)
};
for l in lanes {
let dr = map.get_l(l).get_directed_parent();
if !seen.contains(&dr) && cell.roads.contains_key(&dr.road) {
entry_exits.push(EntryExit {
lane: l,
major_road_names: major_road_names.clone(),
});
seen.insert(dr);
}
}
}
entry_exits
}
fn find_major_road_names(
map: &Map,
neighbourhood: &Neighbourhood,
i: IntersectionID,
) -> BTreeSet<String> {
let mut names = BTreeSet::new();
for r in &map.get_i(i).roads {
if !neighbourhood.interior_roads.contains(r) {
names.insert(map.get_r(*r).get_name(None));
}
}
names
}