1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
use std::fmt;
use serde::{Deserialize, Serialize};
use geom::{Angle, Line, PolyLine};
use crate::{
DirectedRoadID, Direction, Intersection, IntersectionID, LaneID, Map, MovementID,
PathConstraints, RestrictionType,
};
/// Turns are uniquely identified by their (src, dst) lanes and their parent intersection.
/// Intersection is needed to distinguish crosswalks that exist at two ends of a sidewalk.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct TurnID {
pub parent: IntersectionID,
/// src and dst must both belong to parent. No guarantees that src is incoming and dst is
/// outgoing for turns between sidewalks.
pub src: LaneID,
pub dst: LaneID,
}
impl fmt::Display for TurnID {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "TurnID({}, {}, {})", self.src, self.dst, self.parent)
}
}
#[derive(Clone, Copy, Debug, Eq, PartialOrd, Ord, PartialEq, Serialize, Deserialize)]
pub enum TurnType {
/// A marked zebra crossing, where pedestrians usually have priority
Crosswalk,
/// The corner where two sidewalks meet. Pedestrians can cross this without conflicting with
/// any vehicle traffic
SharedSidewalkCorner,
// These are for vehicle turns
Straight,
Right,
Left,
UTurn,
/// An unmarked crossing, where pedestrians may cross without priority over vehicles
// TODO During the next map regeneration, sort this list to be next to crosswalk. I want to
// avoid binary incompatibility in the meantime.
UnmarkedCrossing,
}
impl TurnType {
/// Is the turn a crosswalk or unmarked crossing?
pub fn pedestrian_crossing(self) -> bool {
self == TurnType::Crosswalk || self == TurnType::UnmarkedCrossing
}
}
// TODO This concept may be dated, now that Movements exist. Within a movement, the lane-changing
// turns should be treated as less important.
#[derive(Serialize, Deserialize, Debug, PartialEq, Clone, Copy, PartialOrd)]
pub enum TurnPriority {
/// For stop signs: Can't currently specify this!
/// For traffic signals: Can't do this turn right now.
Banned,
/// For stop signs: cars have to stop before doing this turn, and are accepted with the lowest
/// priority.
/// For traffic signals: Cars can do this immediately if there are no previously accepted
/// conflicting turns.
Yield,
/// For stop signs: cars can do this without stopping. These can conflict!
/// For traffic signals: Must be non-conflicting.
Protected,
}
/// A Turn leads from the end of one Lane to the start of another. (Except for pedestrians;
/// sidewalks are bidirectional.)
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq)]
pub struct Turn {
pub id: TurnID,
pub turn_type: TurnType,
// TODO Some turns might not actually have geometry. Currently encoded by two equal points.
// Represent more directly?
pub geom: PolyLine,
}
impl Turn {
pub fn conflicts_with(&self, other: &Turn) -> bool {
if self.turn_type == TurnType::SharedSidewalkCorner
|| other.turn_type == TurnType::SharedSidewalkCorner
{
return false;
}
if self.id == other.id {
return false;
}
if self.between_sidewalks() && other.between_sidewalks() {
return false;
}
if self.geom.first_pt() == other.geom.first_pt() {
return false;
}
if self.geom.last_pt() == other.geom.last_pt() {
return true;
}
self.geom.intersection(&other.geom).is_some()
}
// The relative angle of the turn, should be the angle from the src lane to the dst lane, but
// instead uses the first and last lines of the turn geometry, which is currently not quite the
// same angle as between the source and destination lanes
pub fn angle(&self) -> Angle {
if self.geom.points().len() < 3 {
return Angle::ZERO;
}
self.geom
.last_line()
.angle()
.shortest_rotation_towards(self.geom.first_line().angle())
}
pub fn between_sidewalks(&self) -> bool {
self.turn_type == TurnType::SharedSidewalkCorner
|| self.turn_type == TurnType::Crosswalk
|| self.turn_type == TurnType::UnmarkedCrossing
}
// TODO Maybe precompute this.
/// Penalties for (lane types, lane-changing, slow lane). The penalty may depend on the vehicle
/// performing the turn. Lower means preferable.
pub fn penalty(&self, constraints: PathConstraints, map: &Map) -> (usize, usize, usize) {
let from = map.get_l(self.id.src);
let to = map.get_l(self.id.dst);
// Starting from the farthest from the center line (right in the US), where is this travel
// lane? Filters by the lane type and ignores lanes that don't go to the target road.
let from_idx = {
let mut cnt = 0;
let r = map.get_r(from.id.road);
for (l, lt) in r.children(from.dir).iter().rev() {
if from.lane_type != *lt {
continue;
}
if map
.get_turns_from_lane(*l)
.into_iter()
.any(|t| t.id.dst.road == to.id.road)
{
cnt += 1;
if from.id == *l {
break;
}
}
}
cnt
};
// Starting from the farthest from the center line (right in the US), where is this travel
// lane? Filters by the lane type.
let to_idx = {
let mut cnt = 0;
let r = map.get_r(to.id.road);
for (l, lt) in r.children(to.dir).iter().rev() {
if to.lane_type != *lt {
continue;
}
cnt += 1;
if to.id == *l {
break;
}
}
cnt
};
// TODO I thought about different cases where there are the same/more/less lanes going in
// and out, but then actually, I think the reasonable thing in all cases is just to do
// this.
let lc_cost = ((from_idx as isize) - (to_idx as isize)).abs() as usize;
// If we're a bike, prefer bike lanes, then bus lanes. If we're a bus, prefer bus lanes.
// Otherwise, avoid special lanes, even if we're allowed to use them sometimes because they
// happen to double as turn lanes.
let lt_cost = if constraints == PathConstraints::Bike {
if to.is_biking() {
0
} else if to.is_bus() {
1
} else {
2
}
} else if constraints == PathConstraints::Bus {
if to.is_bus() {
0
} else {
1
}
} else if to.is_bus() {
// Cars should stay out of bus lanes unless it's required to make a turn
3
} else {
0
};
// Keep right (in the US)
let slow_lane = if to_idx > 1 { 1 } else { 0 };
(lt_cost, lc_cost, slow_lane)
}
pub fn is_crossing_arterial_intersection(&self, map: &Map) -> bool {
use crate::osm::RoadRank;
if !self.turn_type.pedestrian_crossing() {
return false;
}
// Distance-only metric has many false positives and negatives
// return turn.geom.length() > Distance::feet(41.0);
let intersection = map.get_i(self.id.parent);
intersection.roads.iter().any(|r| {
let rank = map.get_r(*r).get_rank();
rank == RoadRank::Arterial || rank == RoadRank::Highway
})
}
/// Is this turn legal, according to turn lane tagging?
pub(crate) fn permitted_by_lane(&self, map: &Map) -> bool {
if let Some(types) = map
.get_l(self.id.src)
.get_lane_level_turn_restrictions(map.get_parent(self.id.src), false)
{
types.contains(&self.turn_type)
} else {
true
}
}
/// Is this turn legal, according to turn restrictions defined between road segments?
pub(crate) fn permitted_by_road(&self, i: &Intersection, map: &Map) -> bool {
if self.between_sidewalks() {
return true;
}
let src = map.get_parent(self.id.src);
let dst = self.id.dst.road;
for (restriction, to) in &src.turn_restrictions {
// The restriction only applies to one direction of the road.
if !i.roads.contains(to) {
continue;
}
match restriction {
RestrictionType::BanTurns => {
if dst == *to {
return false;
}
}
RestrictionType::OnlyAllowTurns => {
if dst != *to {
return false;
}
}
}
}
true
}
/// If this turn is a crosswalk over a single road, return that road and which end of the road
/// is crossed.
pub fn crosswalk_over_road(&self, map: &Map) -> Option<DirectedRoadID> {
if !self.turn_type.pedestrian_crossing() {
return None;
}
// We cross multiple roads
if self.id.src.road != self.id.dst.road {
return None;
}
Some(DirectedRoadID {
road: self.id.src.road,
dir: if map.get_r(self.id.src.road).dst_i == self.id.parent {
Direction::Fwd
} else {
Direction::Back
},
})
}
/// Only appropriat for pedestrian crossings. The geometry of crosswalks will first cross part
/// of a sidewalk corner, then actually enter the road. Extract the piece that's in the road.
pub fn crosswalk_line(&self) -> Option<Line> {
let pts = self.geom.points();
if pts.len() < 3 {
warn!("Crosswalk {} was squished earlier", self.id);
return None;
}
Line::new(pts[1], pts[2]).ok()
}
}
impl TurnID {
pub fn to_movement(self, map: &Map) -> MovementID {
MovementID {
from: map.get_l(self.src).get_directed_parent(),
to: map.get_l(self.dst).get_directed_parent(),
parent: self.parent,
crosswalk: map.get_l(self.src).is_walkable(),
}
}
}