1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
use std::fmt;

use serde::{Deserialize, Serialize};

use geom::{Angle, Line, PolyLine};

use crate::{
    DirectedRoadID, Direction, Intersection, IntersectionID, LaneID, Map, MovementID,
    PathConstraints, RestrictionType,
};

/// Turns are uniquely identified by their (src, dst) lanes and their parent intersection.
/// Intersection is needed to distinguish crosswalks that exist at two ends of a sidewalk.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct TurnID {
    pub parent: IntersectionID,
    /// src and dst must both belong to parent. No guarantees that src is incoming and dst is
    /// outgoing for turns between sidewalks.
    pub src: LaneID,
    pub dst: LaneID,
}

impl fmt::Display for TurnID {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "TurnID({}, {}, {})", self.src, self.dst, self.parent)
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialOrd, Ord, PartialEq, Serialize, Deserialize)]
pub enum TurnType {
    /// A marked zebra crossing, where pedestrians usually have priority
    Crosswalk,
    /// The corner where two sidewalks meet. Pedestrians can cross this without conflicting with
    /// any vehicle traffic
    SharedSidewalkCorner,
    // These are for vehicle turns
    Straight,
    Right,
    Left,
    UTurn,
    /// An unmarked crossing, where pedestrians may cross without priority over vehicles
    // TODO During the next map regeneration, sort this list to be next to crosswalk. I want to
    // avoid binary incompatibility in the meantime.
    UnmarkedCrossing,
}

impl TurnType {
    /// Is the turn a crosswalk or unmarked crossing?
    pub fn pedestrian_crossing(self) -> bool {
        self == TurnType::Crosswalk || self == TurnType::UnmarkedCrossing
    }
}

// TODO This concept may be dated, now that Movements exist. Within a movement, the lane-changing
// turns should be treated as less important.
#[derive(Serialize, Deserialize, Debug, PartialEq, Clone, Copy, PartialOrd)]
pub enum TurnPriority {
    /// For stop signs: Can't currently specify this!
    /// For traffic signals: Can't do this turn right now.
    Banned,
    /// For stop signs: cars have to stop before doing this turn, and are accepted with the lowest
    /// priority.
    /// For traffic signals: Cars can do this immediately if there are no previously accepted
    /// conflicting turns.
    Yield,
    /// For stop signs: cars can do this without stopping. These can conflict!
    /// For traffic signals: Must be non-conflicting.
    Protected,
}

/// A Turn leads from the end of one Lane to the start of another. (Except for pedestrians;
/// sidewalks are bidirectional.)
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq)]
pub struct Turn {
    pub id: TurnID,
    pub turn_type: TurnType,
    // TODO Some turns might not actually have geometry. Currently encoded by two equal points.
    // Represent more directly?
    pub geom: PolyLine,
}

impl Turn {
    pub fn conflicts_with(&self, other: &Turn) -> bool {
        if self.turn_type == TurnType::SharedSidewalkCorner
            || other.turn_type == TurnType::SharedSidewalkCorner
        {
            return false;
        }
        if self.id == other.id {
            return false;
        }
        if self.between_sidewalks() && other.between_sidewalks() {
            return false;
        }

        if self.geom.first_pt() == other.geom.first_pt() {
            return false;
        }
        if self.geom.last_pt() == other.geom.last_pt() {
            return true;
        }
        self.geom.intersection(&other.geom).is_some()
    }

    // The relative angle of the turn, should be the angle from the src lane to the dst lane, but
    // instead uses the first and last lines of the turn geometry, which is currently not quite the
    // same angle as between the source and destination lanes
    pub fn angle(&self) -> Angle {
        if self.geom.points().len() < 3 {
            return Angle::ZERO;
        }

        self.geom
            .last_line()
            .angle()
            .shortest_rotation_towards(self.geom.first_line().angle())
    }

    pub fn between_sidewalks(&self) -> bool {
        self.turn_type == TurnType::SharedSidewalkCorner
            || self.turn_type == TurnType::Crosswalk
            || self.turn_type == TurnType::UnmarkedCrossing
    }

    // TODO Maybe precompute this.
    /// Penalties for (lane types, lane-changing, slow lane). The penalty may depend on the vehicle
    /// performing the turn. Lower means preferable.
    pub fn penalty(&self, constraints: PathConstraints, map: &Map) -> (usize, usize, usize) {
        let from = map.get_l(self.id.src);
        let to = map.get_l(self.id.dst);

        // Starting from the farthest from the center line (right in the US), where is this travel
        // lane? Filters by the lane type and ignores lanes that don't go to the target road.
        let from_idx = {
            let mut cnt = 0;
            let r = map.get_r(from.id.road);
            for (l, lt) in r.children(from.dir).iter().rev() {
                if from.lane_type != *lt {
                    continue;
                }
                if map
                    .get_turns_from_lane(*l)
                    .into_iter()
                    .any(|t| t.id.dst.road == to.id.road)
                {
                    cnt += 1;
                    if from.id == *l {
                        break;
                    }
                }
            }
            cnt
        };

        // Starting from the farthest from the center line (right in the US), where is this travel
        // lane? Filters by the lane type.
        let to_idx = {
            let mut cnt = 0;
            let r = map.get_r(to.id.road);
            for (l, lt) in r.children(to.dir).iter().rev() {
                if to.lane_type != *lt {
                    continue;
                }
                cnt += 1;
                if to.id == *l {
                    break;
                }
            }
            cnt
        };

        // TODO I thought about different cases where there are the same/more/less lanes going in
        // and out, but then actually, I think the reasonable thing in all cases is just to do
        // this.
        let lc_cost = ((from_idx as isize) - (to_idx as isize)).abs() as usize;

        // If we're a bike, prefer bike lanes, then bus lanes. If we're a bus, prefer bus lanes.
        // Otherwise, avoid special lanes, even if we're allowed to use them sometimes because they
        // happen to double as turn lanes.
        let lt_cost = if constraints == PathConstraints::Bike {
            if to.is_biking() {
                0
            } else if to.is_bus() {
                1
            } else {
                2
            }
        } else if constraints == PathConstraints::Bus {
            if to.is_bus() {
                0
            } else {
                1
            }
        } else if to.is_bus() {
            // Cars should stay out of bus lanes unless it's required to make a turn
            3
        } else {
            0
        };

        // Keep right (in the US)
        let slow_lane = if to_idx > 1 { 1 } else { 0 };

        (lt_cost, lc_cost, slow_lane)
    }

    pub fn is_crossing_arterial_intersection(&self, map: &Map) -> bool {
        use crate::osm::RoadRank;
        if !self.turn_type.pedestrian_crossing() {
            return false;
        }
        // Distance-only metric has many false positives and negatives
        // return turn.geom.length() > Distance::feet(41.0);

        let intersection = map.get_i(self.id.parent);
        intersection.roads.iter().any(|r| {
            let rank = map.get_r(*r).get_rank();
            rank == RoadRank::Arterial || rank == RoadRank::Highway
        })
    }

    /// Is this turn legal, according to turn lane tagging?
    pub(crate) fn permitted_by_lane(&self, map: &Map) -> bool {
        if let Some(types) = map
            .get_l(self.id.src)
            .get_lane_level_turn_restrictions(map.get_parent(self.id.src), false)
        {
            types.contains(&self.turn_type)
        } else {
            true
        }
    }

    /// Is this turn legal, according to turn restrictions defined between road segments?
    pub(crate) fn permitted_by_road(&self, i: &Intersection, map: &Map) -> bool {
        if self.between_sidewalks() {
            return true;
        }

        let src = map.get_parent(self.id.src);
        let dst = self.id.dst.road;

        for (restriction, to) in &src.turn_restrictions {
            // The restriction only applies to one direction of the road.
            if !i.roads.contains(to) {
                continue;
            }
            match restriction {
                RestrictionType::BanTurns => {
                    if dst == *to {
                        return false;
                    }
                }
                RestrictionType::OnlyAllowTurns => {
                    if dst != *to {
                        return false;
                    }
                }
            }
        }

        true
    }

    /// If this turn is a crosswalk over a single road, return that road and which end of the road
    /// is crossed.
    pub fn crosswalk_over_road(&self, map: &Map) -> Option<DirectedRoadID> {
        if !self.turn_type.pedestrian_crossing() {
            return None;
        }
        // We cross multiple roads
        if self.id.src.road != self.id.dst.road {
            return None;
        }
        Some(DirectedRoadID {
            road: self.id.src.road,
            dir: if map.get_r(self.id.src.road).dst_i == self.id.parent {
                Direction::Fwd
            } else {
                Direction::Back
            },
        })
    }

    /// Only appropriat for pedestrian crossings. The geometry of crosswalks will first cross part
    /// of a sidewalk corner, then actually enter the road. Extract the piece that's in the road.
    pub fn crosswalk_line(&self) -> Option<Line> {
        let pts = self.geom.points();
        if pts.len() < 3 {
            warn!("Crosswalk {} was squished earlier", self.id);
            return None;
        }
        Line::new(pts[1], pts[2]).ok()
    }
}

impl TurnID {
    pub fn to_movement(self, map: &Map) -> MovementID {
        MovementID {
            from: map.get_l(self.src).get_directed_parent(),
            to: map.get_l(self.dst).get_directed_parent(),
            parent: self.parent,
            crosswalk: map.get_l(self.src).is_walkable(),
        }
    }
}