1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet};
use serde::{Deserialize, Serialize};
use abstutil::{deserialize_btreemap, prettyprint_usize, serialize_btreemap, FixedMap};
use geom::{Duration, Time};
use map_model::{
ControlStopSign, ControlTrafficSignal, Intersection, IntersectionID, LaneID, Map, StageType,
Traversable, TurnID, TurnPriority, TurnType, UberTurn,
};
use crate::mechanics::car::{Car, CarState};
use crate::mechanics::Queue;
use crate::{
AgentID, AlertLocation, CarID, Command, DelayCause, Event, Scheduler, SimOptions, Speed,
};
const WAIT_AT_STOP_SIGN: Duration = Duration::const_seconds(0.5);
const WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL: Duration = Duration::const_seconds(0.2);
/// Manages conflicts at intersections. When an agent has reached the end of a lane, they call
/// maybe_start_turn to make a Request. Based on the intersection type (stop sign, traffic signal,
/// or a "freeform policy"), the Request gets queued or immediately accepted. When agents finish
/// turns or when some time passes (for traffic signals), the intersection also gets a chance to
/// react, maybe granting one of the pending requests.
///
/// Most of the complexity comes from attempting to workaround
/// <https://a-b-street.github.io/docs/tech/trafficsim/gridlock.html>.
#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct IntersectionSimState {
state: BTreeMap<IntersectionID, State>,
use_freeform_policy_everywhere: bool,
dont_block_the_box: bool,
break_turn_conflict_cycles: bool,
handle_uber_turns: bool,
disable_turn_conflicts: bool,
// (x, y) means x is blocked by y. It's a many-to-many relationship. TODO Better data
// structure.
blocked_by: BTreeSet<(CarID, CarID)>,
events: Vec<Event>,
// Count how many calls to maybe_start_turn there are aside from the initial call. Break down
// failures by those not allowed by the current intersection state vs those blocked by a
// vehicle in the way in the target queue.
total_repeat_requests: usize,
not_allowed_requests: usize,
blocked_by_someone_requests: usize,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
struct State {
id: IntersectionID,
// The in-progress turns which any potential new turns must not conflict with
accepted: BTreeSet<Request>,
// Track when a request is first made and if it's "urgent" (because the agent is overflowing a
// short queue)
#[serde(
serialize_with = "serialize_btreemap",
deserialize_with = "deserialize_btreemap"
)]
waiting: BTreeMap<Request, (Time, bool)>,
// When a vehicle begins an uber-turn, reserve the future turns to ensure they're able to
// complete the entire sequence. This is especially necessary since groups of traffic signals
// are not yet configured as one.
reserved: BTreeSet<Request>,
// In some cases, a turn completing at one intersection may affect agents waiting to start an
// uber-turn at nearby intersections.
uber_turn_neighbors: Vec<IntersectionID>,
// This is keyed by the lane the agent is approaching from. Note that:
// 1) the turn in the request may change by the time the leader arrives -- they might decide to
// aim for a different destination lane
// 2) If another agent pulls out on a driveway before this agent, they become the leader and
// overwrite this one
#[serde(
serialize_with = "serialize_btreemap",
deserialize_with = "deserialize_btreemap"
)]
leader_eta: BTreeMap<LaneID, (Request, Time)>,
signal: Option<SignalState>,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
struct SignalState {
// The current stage of the signal, zero based
current_stage: usize,
// The time when the signal is checked for advancing
stage_ends_at: Time,
// The number of times a variable signal has been extended during the current stage.
extensions_count: usize,
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Clone, Debug)]
struct Request {
agent: AgentID,
turn: TurnID,
}
// Mutations
impl IntersectionSimState {
pub fn new(map: &Map, scheduler: &mut Scheduler, opts: &SimOptions) -> IntersectionSimState {
let mut sim = IntersectionSimState {
state: BTreeMap::new(),
use_freeform_policy_everywhere: opts.use_freeform_policy_everywhere,
dont_block_the_box: !opts.allow_block_the_box,
break_turn_conflict_cycles: !opts.dont_break_turn_conflict_cycles,
handle_uber_turns: !opts.dont_handle_uber_turns,
disable_turn_conflicts: opts.disable_turn_conflicts,
blocked_by: BTreeSet::new(),
events: Vec::new(),
total_repeat_requests: 0,
not_allowed_requests: 0,
blocked_by_someone_requests: 0,
};
if sim.disable_turn_conflicts {
sim.use_freeform_policy_everywhere = true;
}
for i in map.all_intersections() {
let mut state = State {
id: i.id,
accepted: BTreeSet::new(),
waiting: BTreeMap::new(),
reserved: BTreeSet::new(),
uber_turn_neighbors: Vec::new(),
signal: None,
leader_eta: BTreeMap::new(),
};
if i.is_traffic_signal() {
state.signal = Some(SignalState::new(i.id, Time::START_OF_DAY, map, scheduler));
}
if let Some(mut set) = map_model::IntersectionCluster::autodetect(i.id, map) {
set.remove(&i.id);
state.uber_turn_neighbors.extend(set);
}
sim.state.insert(i.id, state);
}
sim
}
pub fn turn_finished(
&mut self,
now: Time,
agent: AgentID,
turn: TurnID,
scheduler: &mut Scheduler,
map: &Map,
handling_live_edits: bool,
) {
let state = self.state.get_mut(&turn.parent).unwrap();
assert!(state.accepted.remove(&Request { agent, turn }));
state.reserved.remove(&Request { agent, turn });
if !handling_live_edits && map.get_t(turn).turn_type != TurnType::SharedSidewalkCorner {
self.wakeup_waiting(now, turn.parent, scheduler, map);
}
if self.break_turn_conflict_cycles {
if let AgentID::Car(car) = agent {
self.blocked_by.retain(|(_, c)| *c != car);
}
}
// If this intersection has uber-turns going through it, then we may need to wake up agents
// with a reserved uber-turn that're waiting at nearby intersections. They may have
// reserved their sequence of turns but then gotten stuck by somebody filling up a queue a
// few steps away.
for id in &self.state[&turn.parent].uber_turn_neighbors {
self.wakeup_waiting(now, *id, scheduler, map);
}
}
/// For deleting cars
pub fn cancel_request(&mut self, agent: AgentID, turn: TurnID) {
let state = self.state.get_mut(&turn.parent).unwrap();
state.waiting.remove(&Request { agent, turn });
if self.break_turn_conflict_cycles {
if let AgentID::Car(car) = agent {
self.blocked_by.retain(|(c1, c2)| *c1 != car && *c2 != car);
}
}
}
pub fn space_freed(
&mut self,
now: Time,
i: IntersectionID,
scheduler: &mut Scheduler,
map: &Map,
) {
self.wakeup_waiting(now, i, scheduler, map);
}
/// Vanished at border, stopped biking, etc -- a vehicle disappeared, and didn't have one last
/// turn.
pub fn vehicle_gone(&mut self, car: CarID) {
self.blocked_by.retain(|(c1, c2)| *c1 != car && *c2 != car);
}
pub fn agent_deleted_mid_turn(&mut self, agent: AgentID, turn: TurnID) {
let state = self.state.get_mut(&turn.parent).unwrap();
assert!(state.accepted.remove(&Request { agent, turn }));
// This agent might have a few more nearby turns reserved, because they're part of an
// uber-turn. It's a blunt response to just clear them all out, but it should be correct.
for state in self.state.values_mut() {
state.reserved.retain(|req| req.agent != agent);
}
}
fn wakeup_waiting(&self, now: Time, i: IntersectionID, scheduler: &mut Scheduler, map: &Map) {
let mut all: Vec<(Request, Time, bool)> = self.state[&i]
.waiting
.iter()
.map(|(r, (t, urgent))| (r.clone(), *t, *urgent))
.collect();
// Sort by waiting time, so things like stop signs actually are first-come, first-served.
// But with an override: if somebody is currently on a queue that's overflowing, they're
// very likely to be part of a cycle causing gridlock. Let them go first.
all.sort_by_key(|(_, t, urgent)| (!*urgent, *t));
// Wake up Priority turns before Yield turns. Don't wake up Banned turns at all. This makes
// sure priority vehicles should get the head-start, without blocking yield vehicles
// unnecessarily.
let mut protected = Vec::new();
let mut yielding = Vec::new();
if self.use_freeform_policy_everywhere {
for (req, _, _) in all {
protected.push(req);
}
} else if let Some(signal) = map.maybe_get_traffic_signal(i) {
let current_stage = self.state[&i].signal.as_ref().unwrap().current_stage;
let stage = &signal.stages[current_stage];
let reserved = &self.state[&i].reserved;
let i = map.get_i(i);
for (req, _, _) in all {
match stage.get_priority_of_turn(req.turn, i) {
TurnPriority::Protected => {
protected.push(req);
}
TurnPriority::Yield => {
yielding.push(req);
}
// No need to wake up unless it has reserved
TurnPriority::Banned => {
if reserved.contains(&req) {
protected.push(req);
}
}
}
}
} else if let Some(sign) = map.maybe_get_stop_sign(i) {
for (req, _, _) in all {
match sign.get_priority(req.turn, map) {
TurnPriority::Protected => {
protected.push(req);
}
TurnPriority::Yield => {
yielding.push(req);
}
TurnPriority::Banned => unreachable!(),
}
}
} else {
// This could either be a border intersection or an intersection that was just closed
// in the middle of simulation. In either case, there shouldn't be any other turns at
// it.
assert!(protected.is_empty());
assert!(yielding.is_empty());
};
protected.extend(yielding);
// We now have all the requests in the order that we want to wake them up. The scheduler
// arbitrarily (but deterministically) orders commands with the same time, so preserve the
// ordering by adding little epsilons.
let mut delay = Duration::ZERO;
for req in protected {
// Use update because multiple agents could finish a turn at the same time, before the
// waiting one has a chance to try again.
scheduler.update(now + delay, Command::update_agent(req.agent));
delay += Duration::EPSILON;
}
}
/// This is only triggered for traffic signals.
pub fn update_intersection(
&mut self,
now: Time,
id: IntersectionID,
map: &Map,
scheduler: &mut Scheduler,
) {
let i = map.get_i(id);
// trivial function that advances the signal stage and returns duration
fn advance(
signal_state: &mut SignalState,
signal: &ControlTrafficSignal,
i: &Intersection,
allow_crosswalk_skip: bool,
) -> Duration {
signal_state.current_stage = (signal_state.current_stage + 1) % signal.stages.len();
let stage = &signal.stages[signal_state.current_stage];
// only skip for variable all-walk crosswalk
if let StageType::Variable(_, _, _) = stage.stage_type {
if allow_crosswalk_skip && stage.max_crosswalk_time(i).is_some() {
// we can skip this stage, as its all walk and we're allowed to skip (no
// pedestrian waiting).
signal_state.current_stage =
(signal_state.current_stage + 1) % signal.stages.len();
}
}
signal.stages[signal_state.current_stage]
.stage_type
.simple_duration()
}
let state = self.state.get_mut(&id).unwrap();
let signal_state = state.signal.as_mut().unwrap();
let signal = map.get_traffic_signal(id);
let ped_waiting = state.waiting.keys().any(|req| {
if let AgentID::Pedestrian(_) = req.agent {
return true;
}
false
});
let duration: Duration;
// Switch to a new stage?
assert_eq!(now, signal_state.stage_ends_at);
let old_stage = &signal.stages[signal_state.current_stage];
match old_stage.stage_type {
StageType::Fixed(_) => {
duration = advance(signal_state, signal, i, !ped_waiting);
}
StageType::Variable(min, delay, additional) => {
// test if anyone is waiting in current stage, and if so, extend the signal cycle.
// Filter out pedestrians, as they've had their chance and the delay
// could be short enough to keep them on the curb.
let delay = std::cmp::max(Duration::const_seconds(1.0), delay);
// Only extend for the fixed additional time
if signal_state.extensions_count as f64 * delay.inner_seconds()
>= additional.inner_seconds()
{
self.events.push(Event::Alert(
AlertLocation::Intersection(id),
format!(
"exhausted a variable stage {},{},{},{}",
min, delay, additional, signal_state.extensions_count
),
));
duration = advance(signal_state, signal, i, !ped_waiting);
signal_state.extensions_count = 0;
} else if state.waiting.keys().all(|req| {
if let AgentID::Pedestrian(_) = req.agent {
return true;
}
// Should we only allow protected to extend or any not banned?
// currently only the protected demand control extended.
old_stage.get_priority_of_turn(req.turn, i) != TurnPriority::Protected
}) {
signal_state.extensions_count = 0;
duration = advance(signal_state, signal, i, !ped_waiting);
} else {
signal_state.extensions_count += 1;
duration = delay;
self.events.push(Event::Alert(
AlertLocation::Intersection(id),
format!(
"Extending a variable stage {},{},{},{}",
min, delay, additional, signal_state.extensions_count
),
));
}
}
}
signal_state.stage_ends_at = now + duration;
scheduler.push(signal_state.stage_ends_at, Command::UpdateIntersection(id));
self.wakeup_waiting(now, id, scheduler, map);
}
/// For cars: The head car calls this when they're at the end of the lane WaitingToAdvance. If
/// this returns true, then the head car MUST actually start this turn.
/// For peds: Likewise -- only called when the ped is at the start of the turn. They must
/// actually do the turn if this returns true.
///
/// If this returns false, the agent should NOT retry. IntersectionSimState will schedule a
/// retry event at some point.
pub fn maybe_start_turn(
&mut self,
agent: AgentID,
turn: TurnID,
speed: Speed,
now: Time,
map: &Map,
scheduler: &mut Scheduler,
maybe_cars_and_queues: Option<(
&Car,
&FixedMap<CarID, Car>,
&mut HashMap<Traversable, Queue>,
)>,
) -> bool {
#![allow(clippy::logic_bug)] // Remove once TODO below is taken care of
let req = Request { agent, turn };
if let Some(_eta) = self
.state
.get_mut(&turn.parent)
.unwrap()
.leader_eta
.remove(&req.turn.src)
{
// When they're late, it's because of a slow laggy head. Conflicting turns would've
// been blocked anyway. Uncomment to debug
//info!("{} predicted ETA {}, actually {}", req.agent, eta, now);
}
let entry = self
.state
.get_mut(&turn.parent)
.unwrap()
.waiting
.entry(req.clone());
let repeat_request = match entry {
std::collections::btree_map::Entry::Vacant(_) => false,
std::collections::btree_map::Entry::Occupied(_) => true,
};
let urgent = if let Some((car, _, queues)) = maybe_cars_and_queues.as_ref() {
queues[&car.router.head()].is_overflowing()
} else {
false
};
entry.or_insert((now, urgent));
if repeat_request {
self.total_repeat_requests += 1;
}
let shared_sidewalk_corner =
map.get_t(req.turn).turn_type == TurnType::SharedSidewalkCorner;
let readonly_pair = maybe_cars_and_queues.as_ref().map(|(_, c, q)| (*c, &**q));
let started_uber_turn = |state: &Self, car: &Car| {
state.handle_uber_turns && car.router.get_path().currently_inside_ut().is_some()
};
#[allow(clippy::if_same_then_else)]
let allowed = if shared_sidewalk_corner {
// SharedSidewalkCorner doesn't conflict with anything -- fastpath!
true
} else if !self.handle_accepted_conflicts(&req, map, readonly_pair, Some((now, scheduler)))
{
// It's never OK to perform a conflicting turn
false
} else if maybe_cars_and_queues
.as_ref()
.map(|(car, _, _)| started_uber_turn(self, *car))
.unwrap_or(false)
{
// If we started an uber-turn, then finish it! But alert if we're running a red light.
// TODO: Consider reenabling alert
if let Some(signal) = map.maybe_get_traffic_signal(turn.parent) {
// Don't pass in the scheduler, aka, don't pause before yielding.
if !self.traffic_signal_policy(&req, map, signal, speed, now, None) && false {
self.events.push(Event::Alert(
AlertLocation::Intersection(req.turn.parent),
format!("Running a red light inside an uber-turn: {:?}", req),
));
}
}
true
} else if self.use_freeform_policy_everywhere {
// If we made it this far, we don't conflict with an accepted turn
true
} else if let Some(signal) = map.maybe_get_traffic_signal(turn.parent) {
self.traffic_signal_policy(&req, map, signal, speed, now, Some(scheduler))
} else if let Some(sign) = map.maybe_get_stop_sign(turn.parent) {
self.stop_sign_policy(&req, map, sign, speed, now, scheduler)
} else {
unreachable!()
};
if !allowed {
if repeat_request {
self.not_allowed_requests += 1;
}
// remove the reservation if we're about to start a UT and can't move
if self.handle_uber_turns {
if let Some(ut) = maybe_cars_and_queues
.as_ref()
.and_then(|(car, _, _)| car.router.get_path().about_to_start_ut())
{
for t in &ut.path {
self.state
.get_mut(&t.parent)
.unwrap()
.reserved
.remove(&Request { agent, turn: *t });
}
}
}
return false;
}
// Lock the entire uber-turn.
if self.handle_uber_turns {
if let Some(ut) = maybe_cars_and_queues
.as_ref()
.and_then(|(car, _, _)| car.router.get_path().about_to_start_ut())
{
// If there's a problem up ahead, don't start.
for t in &ut.path {
let req = Request { agent, turn: *t };
if !self.handle_accepted_conflicts(&req, map, readonly_pair, None) {
if repeat_request {
self.blocked_by_someone_requests += 1;
}
return false;
}
}
// If the way is clear, make sure it stays that way.
for t in &ut.path {
self.state
.get_mut(&t.parent)
.unwrap()
.reserved
.insert(Request { agent, turn: *t });
}
}
}
// Don't block the box.
if let Some((car, cars, queues)) = maybe_cars_and_queues {
assert_eq!(agent, AgentID::Car(car.vehicle.id));
let inside_ut = self.handle_uber_turns
&& (car.router.get_path().currently_inside_ut().is_some()
|| car.router.get_path().about_to_start_ut().is_some());
let queue = queues.get_mut(&Traversable::Lane(turn.dst)).unwrap();
if !queue.try_to_reserve_entry(
car,
!self.dont_block_the_box
|| allow_block_the_box(map.get_i(turn.parent))
|| inside_ut,
) {
let mut actually_did_reserve_entry = false;
if self.break_turn_conflict_cycles {
if let Some(c) = queue.laggy_head {
self.blocked_by.insert((car.vehicle.id, c));
} else if let Some(c) = queue.get_active_cars().get(0) {
self.blocked_by.insert((car.vehicle.id, *c));
} else {
// try_to_reserve_entry must have failed because somebody has filled up
// reserved_length. That only happens while a turn is in progress, so this
// unwrap() must work.
let blocking_req = self.state[&turn.parent]
.accepted
.iter()
.find(|r| r.turn.dst == turn.dst)
.unwrap();
self.blocked_by
.insert((car.vehicle.id, blocking_req.agent.as_car()));
}
// Allow blocking the box if we're part of a cycle.
if self
.detect_conflict_cycle(car.vehicle.id, (cars, queues))
.is_some()
{
// Reborrow
let queue = queues.get_mut(&Traversable::Lane(turn.dst)).unwrap();
actually_did_reserve_entry = queue.try_to_reserve_entry(car, true);
}
}
if !actually_did_reserve_entry {
if repeat_request {
self.blocked_by_someone_requests += 1;
}
return false;
}
}
}
// TODO For now, we're only interested in signals, and there's too much raw data to store
// for stop signs too.
let state = self.state.get_mut(&turn.parent).unwrap();
state.waiting.remove(&req).unwrap();
state.accepted.insert(req);
if self.break_turn_conflict_cycles {
if let AgentID::Car(car) = agent {
self.blocked_by.retain(|(c, _)| *c != car);
}
}
true
}
pub fn collect_events(&mut self) -> Vec<Event> {
std::mem::take(&mut self.events)
}
pub fn handle_live_edited_traffic_signals(
&mut self,
now: Time,
map: &Map,
scheduler: &mut Scheduler,
) {
for state in self.state.values_mut() {
match (
map.maybe_get_traffic_signal(state.id),
state.signal.as_mut(),
) {
(Some(ts), Some(signal_state)) => {
if signal_state.current_stage >= ts.stages.len() {
// Just jump back to the first one. Shrug.
signal_state.current_stage = 0;
println!(
"WARNING: Traffic signal {} was live-edited in the middle of a stage, \
so jumping back to the first stage",
state.id
);
}
}
(Some(_), None) => {
state.signal = Some(SignalState::new(state.id, now, map, scheduler));
}
(None, Some(_)) => {
state.signal = None;
scheduler.cancel(Command::UpdateIntersection(state.id));
}
(None, None) => {}
}
// It's unlikely, but the player might create/destroy traffic signals close together and
// change the uber-turns that exist. To be safe, recalculate everywhere.
state.uber_turn_neighbors.clear();
if let Some(mut set) = map_model::IntersectionCluster::autodetect(state.id, map) {
set.remove(&state.id);
state.uber_turn_neighbors.extend(set);
}
}
}
pub fn handle_live_edits(&self, map: &Map) {
// Just sanity check that we don't have any references to deleted turns
let mut errors = Vec::new();
for state in self.state.values() {
for req in &state.accepted {
if map.maybe_get_t(req.turn).is_none() {
errors.push(format!("{} accepted for {}", req.agent, req.turn));
}
}
for req in state.waiting.keys() {
if map.maybe_get_t(req.turn).is_none() {
errors.push(format!("{} waiting for {}", req.agent, req.turn));
}
}
for req in &state.reserved {
if map.maybe_get_t(req.turn).is_none() {
errors.push(format!("{} has reserved {}", req.agent, req.turn));
}
}
}
if !errors.is_empty() {
for x in errors {
error!("{}", x);
}
panic!("After live map edits, intersection state refers to deleted turns!");
}
}
// Not calling this for pedestrians right now.
// This is "best effort". If we get something wrong, somebody might start a turn and cut off an
// approaching vehicle.
// And it's idempotent -- can call to update an ETA.
pub fn approaching_leader(&mut self, agent: AgentID, turn: TurnID, eta: Time) {
let state = self.state.get_mut(&turn.parent).unwrap();
// If there was a previous entry here for turn.src, then this leader is spawning in front
// of the previous leader on a driveway
state
.leader_eta
.insert(turn.src, (Request { agent, turn }, eta));
}
}
// Queries
impl IntersectionSimState {
pub fn nobody_headed_towards(&self, lane: LaneID, i: IntersectionID) -> bool {
let state = &self.state[&i];
!state
.accepted
.iter()
.chain(state.reserved.iter())
.any(|req| req.turn.dst == lane)
}
pub fn debug_json(&self, id: IntersectionID, map: &Map) -> String {
let json1 = abstutil::to_json(&self.state[&id]);
let json2 = if let Some(ref sign) = map.maybe_get_stop_sign(id) {
abstutil::to_json(sign)
} else if let Some(ref signal) = map.maybe_get_traffic_signal(id) {
abstutil::to_json(signal)
} else {
"\"Border\"".to_string()
};
format!("[{json1}, {json2}]")
}
pub fn get_accepted_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID)> {
self.state[&id]
.accepted
.iter()
.map(|req| (req.agent, req.turn))
.collect()
}
pub fn get_waiting_agents(&self, id: IntersectionID) -> Vec<(AgentID, TurnID, Time)> {
self.state[&id]
.waiting
.iter()
.map(|(req, (time, _))| (req.agent, req.turn, *time))
.collect()
}
/// Returns intersections with travelers waiting for at least `threshold` since `now`, ordered
/// so the longest delayed intersection is first.
pub fn delayed_intersections(
&self,
now: Time,
threshold: Duration,
) -> Vec<(IntersectionID, Time)> {
let mut candidates = Vec::new();
for state in self.state.values() {
if let Some((earliest, _)) = state.waiting.values().min() {
if now - *earliest >= threshold {
candidates.push((state.id, *earliest));
}
}
}
candidates.sort_by_key(|(_, t)| *t);
candidates
}
pub fn current_stage_and_remaining_time(
&self,
now: Time,
i: IntersectionID,
) -> (usize, Duration) {
let state = &self.state[&i].signal.as_ref().unwrap();
if now > state.stage_ends_at {
panic!(
"At {}, but {} should have advanced its stage at {}",
now, i, state.stage_ends_at
);
}
(state.current_stage, state.stage_ends_at - now)
}
pub fn describe_stats(&self) -> Vec<String> {
vec![
"intersection stats".to_string(),
format!(
"{} total turn requests repeated after the initial attempt",
prettyprint_usize(self.total_repeat_requests)
),
format!(
"{} not allowed by intersection ({}%)",
prettyprint_usize(self.not_allowed_requests),
(100.0 * (self.not_allowed_requests as f64) / (self.total_repeat_requests as f64))
.round()
),
format!(
"{} blocked by someone in the way ({}%)",
prettyprint_usize(self.blocked_by_someone_requests),
(100.0 * (self.blocked_by_someone_requests as f64)
/ (self.total_repeat_requests as f64))
.round()
),
]
}
pub fn populate_blocked_by(
&self,
now: Time,
graph: &mut BTreeMap<AgentID, (Duration, DelayCause)>,
map: &Map,
cars: &FixedMap<CarID, Car>,
queues: &HashMap<Traversable, Queue>,
) {
// Don't use self.blocked_by -- that gets complicated with uber-turns and such.
//
// This also assumes default values for handle_uber_turns, disable_turn_conflicts, etc!
for state in self.state.values() {
for (req, (started_at, _)) in &state.waiting {
let turn = map.get_t(req.turn);
// In the absence of other explanations, the agent must be pausing at a stop sign
// or before making an unprotected movement, aka, in the middle of
// WAIT_AT_STOP_SIGN or WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL. Or they're waiting for
// a signal to change.
let mut cause = DelayCause::Intersection(state.id);
if let Some(other) = state.accepted.iter().find(|other| {
turn.conflicts_with(map.get_t(other.turn)) || turn.id == other.turn
}) {
cause = DelayCause::Agent(other.agent);
} else if let AgentID::Car(car) = req.agent {
let queue = &queues[&Traversable::Lane(req.turn.dst)];
let car = cars.get(&car).unwrap();
if !queue.room_for_car(car) {
// TODO Or it's reserved due to an uber turn or something
let blocker = queue
.get_active_cars()
.last()
.cloned()
.or(queue.laggy_head)
.unwrap();
cause = DelayCause::Agent(AgentID::Car(blocker));
} else if let Some(ut) = car.router.get_path().about_to_start_ut() {
if let Some(blocker) = self.check_for_conflicts_before_uber_turn(ut, map) {
cause = DelayCause::Agent(blocker);
}
}
}
graph.insert(req.agent, (now - *started_at, cause));
}
}
}
/// See if any agent is currently performing a turn that conflicts with an uber-turn. Doesn't
/// check for room on the queues.
fn check_for_conflicts_before_uber_turn(&self, ut: &UberTurn, map: &Map) -> Option<AgentID> {
for t in &ut.path {
let turn = map.get_t(*t);
let state = &self.state[&turn.id.parent];
for other in state.accepted.iter().chain(state.reserved.iter()) {
if map.get_t(other.turn).conflicts_with(turn) {
return Some(other.agent);
}
}
}
None
}
}
// Stuff to support maybe_start_turn
impl IntersectionSimState {
fn stop_sign_policy(
&mut self,
req: &Request,
map: &Map,
sign: &ControlStopSign,
speed: Speed,
now: Time,
scheduler: &mut Scheduler,
) -> bool {
let our_priority = sign.get_priority(req.turn, map);
assert!(our_priority != TurnPriority::Banned);
let (our_time, _) = self.state[&req.turn.parent].waiting[req];
if our_priority == TurnPriority::Yield && now < our_time + WAIT_AT_STOP_SIGN {
// Since we have "ownership" of scheduling for req.agent, don't need to use
// scheduler.update.
scheduler.push(
our_time + WAIT_AT_STOP_SIGN,
Command::update_agent(req.agent),
);
return false;
}
// Once upon a time, we'd make sure that this request doesn't conflict with another in
// self.waiting:
// 1) Higher-ranking turns get to go first.
// 2) Equal-ranking turns that started waiting before us get to go first.
// But the exceptions started stacking -- if the other agent is blocked or the turns don't
// even conflict, then allow it. Except determining if the other agent is blocked or not is
// tough and kind of recursive.
//
// So instead, don't do any of that! The WAIT_AT_STOP_SIGN scheduling above and the fact
// that events are processed in time order mean that case #2 is magically handled anyway.
// If a case #1 could've started by now, then they would have. Since they didn't, they must
// be blocked.
// TODO Make sure we can optimistically finish this turn before an approaching
// higher-priority vehicle wants to begin.
// If a pedestrian is going to cut off a car, check how long the car has been waiting and
// maybe yield (regardless of stop sign priority). This is a very rough start to more
// realistic "batching" of pedestrians to cross a street. Without this, if there's one
// pedestrian almost clear of a crosswalk, cars are totally stopped for them, and so a new
// pedestrian arriving will win.
if req.agent.is_pedestrian() {
let our_turn = map.get_t(req.turn);
let time_to_cross = our_turn.geom.length() / speed;
for (other_req, (other_time, _)) in &self.state[&req.turn.parent].waiting {
if matches!(other_req.agent, AgentID::Car(_)) {
if our_turn.conflicts_with(map.get_t(other_req.turn)) {
let our_waiting = now - our_time;
let other_waiting = now - *other_time;
// We can't tell if a car has been waiting for a while due to pedestrians
// crossing, or due to a blockage in their destination queue. Always let
// pedestrians muscle their way in eventually.
if our_waiting > other_waiting {
continue;
}
// Intuition: another pedestrian trying to enter a crosswalk has a 3s
// buffer to "join" the first pedestrian who started crossing and caused
// cars to stop. We're using the time for _this_ pedestrian to cross _this_
// turn, so it's a very rough definition.
if other_waiting > time_to_cross + Duration::seconds(3.0) {
return false;
}
}
}
}
}
true
}
fn traffic_signal_policy(
&mut self,
req: &Request,
map: &Map,
signal: &ControlTrafficSignal,
speed: Speed,
now: Time,
scheduler: Option<&mut Scheduler>,
) -> bool {
let turn = map.get_t(req.turn);
let state = &self.state[&req.turn.parent];
let signal_state = state.signal.as_ref().unwrap();
let stage = &signal.stages[signal_state.current_stage];
let full_stage_duration = stage.stage_type.simple_duration();
let remaining_stage_time = signal_state.stage_ends_at - now;
let (our_time, _) = state.waiting[req];
// Can't go at all this stage.
let our_priority = stage.get_priority_of_turn(req.turn, map.get_i(state.id));
if our_priority == TurnPriority::Banned {
return false;
}
if our_priority == TurnPriority::Yield
&& now < our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL
{
// Since we have "ownership" of scheduling for req.agent, don't need to use
// scheduler.update.
if let Some(s) = scheduler {
s.push(
our_time + WAIT_BEFORE_YIELD_AT_TRAFFIC_SIGNAL,
Command::update_agent(req.agent),
);
}
return false;
}
// Previously: A yield loses to a conflicting Priority turn.
// But similar to the description in stop_sign_policy, this caused unnecessary gridlock.
// Priority vehicles getting scheduled first just requires a little tweak in
// update_intersection.
// TODO Make sure we can optimistically finish this turn before an approaching
// higher-priority vehicle wants to begin.
// Optimistically if nobody else is in the way, this is how long it'll take to finish the
// turn. Don't start the turn if we won't finish by the time the light changes. If we get
// it wrong, that's fine -- block the box a bit.
let time_to_cross = turn.geom.length() / speed;
if time_to_cross > remaining_stage_time {
// Signals enforce a minimum crosswalk time, but some pedestrians are configured to
// walk very slowly. In that case, allow them to go anyway and wind up in the crosswalk
// during a red. This matches reality reasonably.
if time_to_cross <= full_stage_duration {
return false;
}
}
true
}
// If true, the request can go.
fn handle_accepted_conflicts(
&mut self,
req: &Request,
map: &Map,
maybe_cars_and_queues: Option<(&FixedMap<CarID, Car>, &HashMap<Traversable, Queue>)>,
wakeup_stuck_cycle: Option<(Time, &mut Scheduler)>,
) -> bool {
let turn = map.get_t(req.turn);
let mut cycle_detected = false;
let mut ok = true;
for other in self.state[&req.turn.parent]
.accepted
.iter()
.chain(self.state[&req.turn.parent].reserved.iter())
{
// Never short-circuit; always record all of the dependencies; it might help someone
// else unstick things.
if map.get_t(other.turn).conflicts_with(turn) {
if self.break_turn_conflict_cycles {
if let AgentID::Car(c) = req.agent {
if let AgentID::Car(c2) = other.agent {
self.blocked_by.insert((c, c2));
}
if !cycle_detected {
if let Some(cycle) =
self.detect_conflict_cycle(c, maybe_cars_and_queues.unwrap())
{
// Allow the conflicting turn!
self.events.push(Event::Alert(
AlertLocation::Intersection(req.turn.parent),
format!(
"{} found turn conflict cycle involving {:?}",
req.agent, cycle
),
));
cycle_detected = true;
}
}
}
}
if !cycle_detected && !self.disable_turn_conflicts {
ok = false;
}
// It's never safe for two vehicles to go for the same lane.
// TODO I'm questioning this now. If the source is the same, then queueing will
// work normally. If not, then... maybe we need to allow concurrent turns from
// different lanes into the same lane, and somehow make the queueing work out.
if turn.id.dst == other.turn.dst {
if let (Some((now, scheduler)), AgentID::Car(blocker), Some((cars, _))) = (
wakeup_stuck_cycle,
other.agent,
maybe_cars_and_queues.as_ref(),
) {
// Sometimes the vehicle blocking us is actually queued in the turn;
// don't wake them up in that case.
if cycle_detected
&& matches!(cars[&blocker].state, CarState::WaitingToAdvance { .. })
{
self.events.push(Event::Alert(
AlertLocation::Intersection(req.turn.parent),
format!(
"{} waking up {}, who's blocking it as part of a cycle",
req.agent, other.agent
),
));
scheduler.update(
now + Duration::EPSILON,
Command::update_agent(other.agent),
);
}
}
return false;
}
}
}
ok
}
fn detect_conflict_cycle(
&self,
car: CarID,
pair: (&FixedMap<CarID, Car>, &HashMap<Traversable, Queue>),
) -> Option<HashSet<CarID>> {
let (cars, queues) = pair;
let mut queue = vec![car];
let mut seen = HashSet::new();
while !queue.is_empty() {
let current = queue.pop().unwrap();
// Might not actually be a cycle. Insist on seeing the original req.agent
// again.
if !seen.is_empty() && current == car {
return Some(seen);
}
if !seen.contains(¤t) {
seen.insert(current);
for (c1, c2) in &self.blocked_by {
if *c1 == current {
queue.push(*c2);
}
}
// If this car isn't the head of its queue, add that dependency. (Except for
// the original car, which we already know is the head of its queue)
// TODO Maybe store this in blocked_by?
if current != car {
let q = &queues[&cars[¤t].router.head()];
let head = if let Some(c) = q.laggy_head {
c
} else {
q.get_active_cars()[0]
};
if current != head {
queue.push(head);
}
}
}
}
None
}
}
impl SignalState {
fn new(id: IntersectionID, now: Time, map: &Map, scheduler: &mut Scheduler) -> SignalState {
let mut state = SignalState {
current_stage: 0,
stage_ends_at: now,
extensions_count: 0,
};
let signal = map.get_traffic_signal(id);
// What stage are we starting with?
let mut offset = (now - Time::START_OF_DAY) + signal.offset;
loop {
let dt = signal.stages[state.current_stage]
.stage_type
.simple_duration();
if offset >= dt {
offset -= dt;
state.current_stage += 1;
if state.current_stage == signal.stages.len() {
state.current_stage = 0;
}
} else {
state.stage_ends_at = now + dt - offset;
break;
}
}
scheduler.push(state.stage_ends_at, Command::UpdateIntersection(id));
state
}
}
fn allow_block_the_box(i: &Intersection) -> bool {
// Degenerate intersections are often just artifacts of how roads are split up in OSM. Allow
// vehicles to get stuck in them, since the only possible thing they could block is pedestrians
// from using the crosswalk. Those crosswalks usually don't exist in reality, so this behavior
// is more realistic.
if i.roads.len() == 2 {
return true;
}
// TODO Sometimes a traffic signal is surrounded by tiny lanes with almost no capacity.
// Workaround for now.
//
// When adding new cases:
// 1) Organize by which map the intersection fixes
// 2) Ensure a prebaked scenario covers this, to track regressions and make sure it actually
// helps.
let id = i.orig_id.0;
// lakeslice
if id == 53211693
|| id == 53214134
|| id == 53214133
|| id == 987334546
|| id == 848817336
|| id == 1726088131
|| id == 1726088130
|| id == 53217946
|| id == 53223864
|| id == 53211694
|| id == 5440360144
|| id == 246768814
{
return true;
}
// poundbury
if id == 18030505 || id == 2124133018 || id == 30024649 {
return true;
}
false
}