popdat/od.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
//! This is a standalone pipeline for generating a Scenario, starting from origin-destination data
//! (also called desire lines), which gives a count of commuters between two zones, breaking down
//! by mode.
use std::collections::HashMap;
use rand::seq::SliceRandom;
use rand::Rng;
use rand_xorshift::XorShiftRng;
use abstutil::{prettyprint_usize, Timer};
use geom::{Duration, Percent, PolyLine, Polygon, Pt2D, Time};
use map_model::{BuildingID, BuildingType, Map};
use synthpop::{IndividTrip, MapBorders, PersonSpec, TripEndpoint, TripMode, TripPurpose};
/// This describes some number of commuters living in some named zone, working in another (or the
/// same zone), and commuting using some mode.
#[derive(Debug)]
pub struct DesireLine {
pub home_zone: String,
pub work_zone: String,
pub mode: TripMode,
pub number_commuters: usize,
}
// TODO Percentage of taking a lunch trip, when to do it, how far to venture out, what mode to
// use...
pub struct Options {
/// When should somebody depart from home to work?
pub departure_time: NormalDistribution,
/// How long should somebody work before returning home?
pub work_duration: NormalDistribution,
pub include_zones: IncludeZonePolicy,
}
impl Options {
pub fn default() -> Options {
Options {
departure_time: NormalDistribution::new(
Duration::hours(8) + Duration::minutes(30),
Duration::minutes(30),
),
work_duration: NormalDistribution::new(Duration::hours(9), Duration::hours(1)),
include_zones: IncludeZonePolicy::AllowRemote,
}
}
}
/// Only desire lines starting and ending in zones matching this policy will be used.
#[derive(PartialEq)]
pub enum IncludeZonePolicy {
/// Keep zones that at least partially overlap the map's boundary. Note this doesn't mean no
/// off-map trips will occur -- if a zone only partly overlaps the map, then some trips will
/// snap to a border.
MustOverlap,
/// Keep all zones. When looking at desire lines between two remote zones, filter by those
/// whose straight-line segment between zone centroids intersects the map boundary
AllowRemote,
}
/// Generates a scenario from aggregated origin/destination data (DesireLines). The input describes
/// an exact number of people, who live in one zone and work in another (possibly the same) and
/// commute using some mode. For each of them, we just need to pick a specific home and workplace
/// from the zones, and use the Options to pick departure times. We'll wind up creating people who
/// just take two trips daily: home -> work -> home.
///
/// The home and workplace may be a specific building, or they're snapped to a map border,
/// resulting in trips that begin and/or end off-map. The amount of the zone that overlaps with the
/// map boundary determines this. If the zone and map boundary overlap 50% by area, then half of
/// the people to/from this zone will pick buildings, and half will pick borders.
pub fn disaggregate(
map: &Map,
zones: HashMap<String, Polygon>,
desire_lines: Vec<DesireLine>,
opts: Options,
rng: &mut XorShiftRng,
timer: &mut Timer,
) -> Vec<PersonSpec> {
// First decide which zones are relevant for our map. Match homes, shops, and border
// intersections to each zone.
let zones = create_zones(map, zones, opts.include_zones, timer);
let mut people = Vec::new();
let mut on_map_only = 0;
let mut lives_on_map = 0;
let mut works_on_map = 0;
let mut pass_through = 0;
timer.start_iter("create people per desire line", desire_lines.len());
for desire in desire_lines {
timer.next();
// Skip if we filtered out either zone.
if !zones.contains_key(&desire.home_zone) || !zones.contains_key(&desire.work_zone) {
continue;
}
let home_zone = &zones[&desire.home_zone];
let work_zone = &zones[&desire.work_zone];
// If both are remote, make sure the desire line intersects the map
if home_zone.is_remote() && work_zone.is_remote() {
if desire.home_zone == desire.work_zone {
continue;
}
if !map
.get_boundary_polygon()
.intersects_polyline(&PolyLine::must_new(vec![
home_zone.center,
work_zone.center,
]))
{
continue;
}
}
for _ in 0..desire.number_commuters {
// Pick a specific home and workplace. It might be off-map, depending on how much the
// zone overlaps the map.
if let (Some((leave_home, goto_home)), Some((leave_work, goto_work))) = (
home_zone.pick_home(desire.mode, map, rng),
work_zone.pick_workplace(desire.mode, map, rng),
) {
// remove_weird_schedules would clean this up later, but simpler to skip upfront
if leave_home == goto_work || leave_work == goto_home {
continue;
}
match (goto_home, goto_work) {
(TripEndpoint::Building(_), TripEndpoint::Building(_)) => {
on_map_only += 1;
}
(TripEndpoint::Building(_), TripEndpoint::Border(_)) => {
lives_on_map += 1;
}
(TripEndpoint::Border(_), TripEndpoint::Building(_)) => {
works_on_map += 1;
}
(TripEndpoint::Border(_), TripEndpoint::Border(_)) => {
pass_through += 1;
}
_ => unreachable!(),
}
// Create their schedule
let goto_work_time = Time::START_OF_DAY + opts.departure_time.sample(rng);
let return_home_time = goto_work_time + opts.work_duration.sample(rng);
people.push(PersonSpec {
orig_id: None,
trips: vec![
IndividTrip::new(
goto_work_time,
TripPurpose::Work,
leave_home,
goto_work,
desire.mode,
),
IndividTrip::new(
return_home_time,
TripPurpose::Home,
leave_work,
goto_home,
desire.mode,
),
],
});
}
}
}
let total = on_map_only + lives_on_map + works_on_map + pass_through;
for (x, label) in [
(on_map_only, "live and work on-map"),
(lives_on_map, "live on-map, work remote"),
(works_on_map, "live remote, work on-map"),
(pass_through, "just pass through"),
] {
info!(
"{} people ({}) {}",
prettyprint_usize(x),
Percent::of(x, total),
label
);
}
people
}
struct Zone {
polygon: Polygon,
center: Pt2D,
pct_overlap: f64,
// For each building, have a value describing how many people live or work there. The exact
// value doesn't matter; it's just a relative weighting. This way, we can use a weighted sample
// and match more people to larger homes/stores.
homes: Vec<(BuildingID, usize)>,
workplaces: Vec<(BuildingID, usize)>,
borders: MapBorders,
}
impl Zone {
fn is_remote(&self) -> bool {
self.pct_overlap == 0.0
}
}
fn create_zones(
map: &Map,
input: HashMap<String, Polygon>,
include_zones: IncludeZonePolicy,
timer: &mut Timer,
) -> HashMap<String, Zone> {
let all_borders = MapBorders::new(map);
let mut normal_zones = HashMap::new();
let mut remote_zones = HashMap::new();
for (name, zone) in timer
.parallelize(
"create zones",
input.into_iter().collect(),
|(name, polygon)| {
let mut overlapping_area = 0.0;
if let Ok(list) = polygon.intersection(map.get_boundary_polygon()) {
for p in list {
overlapping_area += p.area();
}
}
// Sometimes this is slightly over 100%, because funky things happen with the polygon
// intersection.
let pct_overlap = (overlapping_area / polygon.area()).min(1.0);
let is_remote = pct_overlap == 0.0;
if is_remote && include_zones == IncludeZonePolicy::MustOverlap {
None
} else {
// Multiple zones might all use the same border.
let center = polygon.center();
let mut borders = all_borders.clone();
// TODO For remote zones, we should at least prune for borders on the correct
// "side" of the map. Or we can let fast_dist later take care of it.
if !is_remote {
for list in vec![
&mut borders.incoming_walking,
&mut borders.incoming_driving,
&mut borders.incoming_biking,
&mut borders.outgoing_walking,
&mut borders.outgoing_driving,
&mut borders.outgoing_biking,
] {
// If the zone partly overlaps, only keep borders physically in the
// zone polygon
// TODO If the intersection geometry happens to leak out of the map
// boundary a bit, this could be wrong!
list.retain(|border| polygon.contains_pt(border.pos));
}
}
Some((
name,
Zone {
polygon,
center,
pct_overlap,
homes: Vec::new(),
workplaces: Vec::new(),
borders,
},
))
}
},
)
.into_iter()
.flatten()
{
if zone.is_remote() {
remote_zones.insert(name, zone);
} else {
normal_zones.insert(name, zone);
}
}
info!(
"{} zones partly in the map boundary, {} remote zones",
prettyprint_usize(normal_zones.len()),
prettyprint_usize(remote_zones.len())
);
// Match all buildings to a normal zone.
timer.start_iter("assign buildings to zones", map.all_buildings().len());
for b in map.all_buildings() {
timer.next();
let center = b.polygon.center();
// We're assuming zones don't overlap each other, so just look for the first match.
if let Some((_, zone)) = normal_zones
.iter_mut()
.find(|(_, z)| z.polygon.contains_pt(center))
{
match b.bldg_type {
// The current heuristics for num_residents sometimes assign 0 people to a
// building. We never want that, so just scale them all up.
BuildingType::Residential { num_residents, .. } => {
zone.homes.push((b.id, num_residents + 1));
}
BuildingType::ResidentialCommercial(num_residents, _) => {
zone.homes.push((b.id, num_residents + 1));
// We know how many different stores are located in each building, according to
// OSM. A big mall might have 10 amenities, while standalone
// shops just have 1.
zone.workplaces.push((b.id, b.amenities.len()));
}
BuildingType::Commercial(_) => {
zone.workplaces.push((b.id, b.amenities.len()));
}
BuildingType::Empty => {}
}
}
}
normal_zones.extend(remote_zones);
normal_zones
}
impl Zone {
/// Returns endpoints to (leave home, goto home). These're usually the same, except in some
/// cases of border trips using divided one-ways.
fn pick_home(
&self,
mode: TripMode,
map: &Map,
rng: &mut XorShiftRng,
) -> Option<(TripEndpoint, TripEndpoint)> {
if rng.gen_bool(self.pct_overlap) && !self.homes.is_empty() {
let b = self.homes.choose_weighted(rng, |(_, n)| *n).unwrap().0;
return Some((TripEndpoint::Building(b), TripEndpoint::Building(b)));
}
self.pick_borders(mode, map, rng)
}
/// Returns endpoints to (leave work, goto work). These're usually the same, except in some
/// cases of border trips using divided one-ways.
fn pick_workplace(
&self,
mode: TripMode,
map: &Map,
rng: &mut XorShiftRng,
) -> Option<(TripEndpoint, TripEndpoint)> {
if rng.gen_bool(self.pct_overlap) && !self.workplaces.is_empty() {
let b = self.workplaces.choose_weighted(rng, |(_, n)| *n).unwrap().0;
return Some((TripEndpoint::Building(b), TripEndpoint::Building(b)));
}
self.pick_borders(mode, map, rng)
}
fn pick_borders(
&self,
mode: TripMode,
map: &Map,
rng: &mut XorShiftRng,
) -> Option<(TripEndpoint, TripEndpoint)> {
let (incoming, outgoing) = self.borders.for_mode(mode);
let leave_i = incoming
.choose_weighted(rng, |border| {
(border.weight as f64) * self.center.fast_dist(border.pos).into_inner()
})
.ok()?
.i;
// If we can use the same border on the way back, prefer that.
if outgoing.iter().any(|border| border.i == leave_i) {
return Some((TripEndpoint::Border(leave_i), TripEndpoint::Border(leave_i)));
}
// Otherwise, we might have to use a separate border to re-enter. Prefer the one closest to
// the first, to have a better chance of matching up divided one-ways.
let leave_pt = map.get_i(leave_i).polygon.center();
let goto_i = outgoing
.iter()
.min_by_key(|border| map.get_i(border.i).polygon.center().dist_to(leave_pt))?
.i;
Some((TripEndpoint::Border(leave_i), TripEndpoint::Border(goto_i)))
}
}
/// A normal distribution of Durations.
pub struct NormalDistribution {
pub mean: Duration,
pub std_deviation: Duration,
}
impl NormalDistribution {
pub fn new(mean: Duration, std_deviation: Duration) -> NormalDistribution {
NormalDistribution {
mean,
std_deviation,
}
}
pub fn sample(&self, rng: &mut XorShiftRng) -> Duration {
use rand_distr::{Distribution, Normal};
Duration::seconds(
Normal::new(
self.mean.inner_seconds(),
self.std_deviation.inner_seconds(),
)
.unwrap()
.sample(rng),
)
}
}