1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//! An activity model creates "people" that follow a set schedule of activities through the day.
//! Each activity (like shopping, working, sleeping) lasts some time, and requires the person to go
//! somewhere at some time. This is an extremely simple activity model that just uses data inferred
//! from OSM.
use anyhow::Result;
use rand::seq::SliceRandom;
use rand::Rng;
use rand_xorshift::XorShiftRng;
use abstutil::{prettyprint_usize, Timer};
use geom::{Distance, Duration, Time};
use map_model::{BuildingID, BuildingType, Map, PathConstraints, PathRequest};
use crate::{IndividTrip, PersonSpec, Scenario, TripEndpoint, TripMode, TripPurpose};
use crate::make::{fork_rng, ScenarioGenerator};
impl ScenarioGenerator {
/// Designed in https://github.com/a-b-street/abstreet/issues/154
pub fn proletariat_robot(map: &Map, rng: &mut XorShiftRng, timer: &mut Timer) -> Scenario {
let mut residents: Vec<BuildingID> = Vec::new();
let mut workers: Vec<BuildingID> = Vec::new();
let mut num_bldg_residential = 0;
let mut num_bldg_commercial = 0;
let mut num_bldg_mixed_residential_commercial = 0;
for b in map.all_buildings() {
match b.bldg_type {
BuildingType::Residential { num_residents, .. } => {
for _ in 0..num_residents {
residents.push(b.id);
}
num_bldg_residential += 1;
}
BuildingType::ResidentialCommercial(resident_cap, worker_cap) => {
for _ in 0..resident_cap {
residents.push(b.id);
}
for _ in 0..worker_cap {
workers.push(b.id);
}
num_bldg_mixed_residential_commercial += 1;
}
BuildingType::Commercial(worker_cap) => {
for _ in 0..worker_cap {
workers.push(b.id);
}
num_bldg_commercial += 1;
}
BuildingType::Empty => {}
}
}
residents.shuffle(rng);
workers.shuffle(rng);
let mut s = Scenario::empty(map, "random people going to and from work");
// Include all buses/trains
s.only_seed_buses = None;
let residents_cap = residents.len();
let workers_cap = workers.len();
// this saturation figure is an arbitrary guess - we assume that the number of trips will
// scale as some factor of the people living and/or working on the map. A number of more
// than 1.0 will primarily affect the number of "pass through" trips - people who neither
// work nor live in the neighborhood.
let trip_saturation = 1.2;
let num_trips = (trip_saturation * (residents_cap + workers_cap) as f64) as usize;
// bound probabilities to ensure we're getting some diversity of agents
let lower_bound_prob = 0.05;
let upper_bound_prob = 0.90;
let prob_local_resident = if workers_cap == 0 {
lower_bound_prob
} else {
f64::min(
upper_bound_prob,
f64::max(lower_bound_prob, residents_cap as f64 / num_trips as f64),
)
};
let prob_local_worker = f64::min(
upper_bound_prob,
f64::max(lower_bound_prob, workers_cap as f64 / num_trips as f64),
);
debug!(
"BUILDINGS - workplaces: {}, residences: {}, mixed: {}",
prettyprint_usize(num_bldg_commercial),
prettyprint_usize(num_bldg_residential),
prettyprint_usize(num_bldg_mixed_residential_commercial)
);
debug!(
"CAPACITY - workers_cap: {}, residents_cap: {}, prob_local_worker: {:.1}%, \
prob_local_resident: {:.1}%",
prettyprint_usize(workers_cap),
prettyprint_usize(residents_cap),
prob_local_worker * 100.,
prob_local_resident * 100.
);
let mut num_trips_local = 0;
let mut num_trips_commuting_in = 0;
let mut num_trips_commuting_out = 0;
let mut num_trips_passthru = 0;
timer.start("create people");
// Only consider two-way intersections, so the agent can return the same way
// they came.
// TODO: instead, if it's not a two-way border, we should find an intersection
// an incoming border "near" the outgoing border, to allow a broader set of
// realistic options.
// TODO: prefer larger thoroughfares to better reflect reality.
let commuter_borders: Vec<TripEndpoint> = map
.all_outgoing_borders()
.into_iter()
.filter(|b| b.is_incoming_border())
.map(|b| TripEndpoint::Border(b.id))
.collect();
let person_params = (0..num_trips)
.filter_map(|_| {
let (is_local_resident, is_local_worker) = (
rng.gen_bool(prob_local_resident),
rng.gen_bool(prob_local_worker),
);
let home = if is_local_resident {
if let Some(residence) = residents.pop() {
TripEndpoint::Building(residence)
} else {
*commuter_borders.choose(rng)?
}
} else {
*commuter_borders.choose(rng)?
};
let work = if is_local_worker {
if let Some(workplace) = workers.pop() {
TripEndpoint::Building(workplace)
} else {
*commuter_borders.choose(rng)?
}
} else {
*commuter_borders.choose(rng)?
};
match (&home, &work) {
(TripEndpoint::Building(_), TripEndpoint::Building(_)) => {
num_trips_local += 1;
}
(TripEndpoint::Building(_), TripEndpoint::Border(_)) => {
num_trips_commuting_out += 1;
}
(TripEndpoint::Border(_), TripEndpoint::Building(_)) => {
num_trips_commuting_in += 1;
}
(TripEndpoint::Border(_), TripEndpoint::Border(_)) => {
num_trips_passthru += 1;
}
(TripEndpoint::SuddenlyAppear(_), _) => unreachable!(),
(_, TripEndpoint::SuddenlyAppear(_)) => unreachable!(),
};
Some((home, work, fork_rng(rng)))
})
.collect();
s.people.extend(
timer
.parallelize(
"create people: making PersonSpec from endpoints",
person_params,
|(home, work, mut rng)| match create_prole(home, work, map, &mut rng) {
Ok(person) => Some(person),
Err(e) => {
trace!("Unable to create person. error: {}", e);
None
}
},
)
.into_iter()
.flatten(),
);
timer.stop("create people");
info!(
"TRIPS - total: {}, local: {}, commuting_in: {}, commuting_out: {}, passthru: {}, \
errored: {}, leftover_resident_capacity: {}, leftover_worker_capacity: {}",
prettyprint_usize(num_trips),
prettyprint_usize(num_trips_local),
prettyprint_usize(num_trips_commuting_in),
prettyprint_usize(num_trips_commuting_out),
prettyprint_usize(num_trips_passthru),
prettyprint_usize(num_trips - s.people.len()),
prettyprint_usize(residents.len()),
prettyprint_usize(workers.len()),
);
s
}
}
fn create_prole(
home: TripEndpoint,
work: TripEndpoint,
map: &Map,
rng: &mut XorShiftRng,
) -> Result<PersonSpec> {
if home == work {
// TODO: handle edge-case of working and living in the same building... maybe more likely
// to go for a walk later in the day or something
bail!("TODO: handle working and living in the same building");
}
let mode = match (&home, &work) {
// commuting entirely within map
(TripEndpoint::Building(home_bldg), TripEndpoint::Building(work_bldg)) => {
// Decide mode based on walking distance. If the buildings aren't connected,
// probably a bug in importing; just skip this person.
let dist = if let Some(path) = PathRequest::between_buildings(
map,
*home_bldg,
*work_bldg,
PathConstraints::Pedestrian,
)
.and_then(|req| map.pathfind(req).ok())
{
path.total_length()
} else {
bail!("no path found");
};
// TODO If home or work is in an access-restricted zone (like a living street),
// then probably don't drive there. Actually, it depends on the specific tagging;
// access=no in the US usually means a gated community.
select_trip_mode(dist, rng)
}
// if you exit or leave the map, we assume driving
_ => TripMode::Drive,
};
// TODO This will cause a single morning and afternoon rush. Outside of these times,
// it'll be really quiet. Probably want a normal distribution centered around these
// peak times, but with a long tail.
let mut depart_am = rand_time(
rng,
Time::START_OF_DAY + Duration::hours(7),
Time::START_OF_DAY + Duration::hours(10),
);
let mut depart_pm = rand_time(
rng,
Time::START_OF_DAY + Duration::hours(17),
Time::START_OF_DAY + Duration::hours(19),
);
if rng.gen_bool(0.1) {
// hacky hack to get some background traffic
depart_am = rand_time(
rng,
Time::START_OF_DAY + Duration::hours(0),
Time::START_OF_DAY + Duration::hours(12),
);
depart_pm = rand_time(
rng,
Time::START_OF_DAY + Duration::hours(12),
Time::START_OF_DAY + Duration::hours(24),
);
}
Ok(PersonSpec {
orig_id: None,
trips: vec![
IndividTrip::new(depart_am, TripPurpose::Work, home, work, mode),
IndividTrip::new(depart_pm, TripPurpose::Home, work, home, mode),
],
})
}
fn select_trip_mode(distance: Distance, rng: &mut XorShiftRng) -> TripMode {
// TODO Make this probabilistic
// for example probability of walking currently has massive differences
// at thresholds, it would be nicer to change this gradually
// TODO - do not select based on distance but select one that is fastest/best in the
// given situation excellent bus connection / plenty of parking /
// cycleways / suitable rail connection all strongly influence
// selected mode of transport, distance is not the sole influence
// in some cities there may case where driving is only possible method
// to get somewhere, even at a short distance
// Always walk for really short trips
if distance < Distance::miles(0.5) {
return TripMode::Walk;
}
// Sometimes bike or walk for moderate trips
if distance < Distance::miles(3.0) {
if rng.gen_bool(0.15) {
return TripMode::Bike;
}
if rng.gen_bool(0.05) {
return TripMode::Walk;
}
}
// For longer trips, maybe bike for dedicated cyclists
if rng.gen_bool(0.005) {
return TripMode::Bike;
}
// Try transit if available, or fallback to walking
if rng.gen_bool(0.3) {
return TripMode::Transit;
}
// Most of the time, just drive
TripMode::Drive
}
fn rand_time(rng: &mut XorShiftRng, low: Time, high: Time) -> Time {
assert!(high > low);
Time::START_OF_DAY + Duration::seconds(rng.gen_range(low.inner_seconds()..high.inner_seconds()))
}