sim/
analytics.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use std::fmt::Write;

use serde::{Deserialize, Serialize};

use abstutil::Counter;
use geom::{Duration, Pt2D, Time};
use map_model::{
    CompressedMovementID, IntersectionID, LaneID, Map, MovementID, ParkingLotID, Path, PathRequest,
    RoadID, TransitRouteID, TransitStopID, Traversable, TurnID,
};
use synthpop::TripMode;

use crate::{AgentID, AgentType, AlertLocation, CarID, Event, ParkingSpot, TripID, TripPhaseType};

/// As a simulation runs, different pieces emit Events. The Analytics object listens to these,
/// organizing and storing some information from them. The UI queries Analytics to draw time-series
/// and display statistics.
///
/// For all maps whose weekday scenario fully runs, the game's release includes some "prebaked
/// results." These are just serialized Analytics after running the simulation on a map without any
/// edits for the full day. This is the basis of A/B testing -- the player can edit the map, start
/// running the simulation, and compare the live Analytics to the prebaked baseline Analytics.
#[derive(Clone, Serialize, Deserialize)]
pub struct Analytics {
    pub road_thruput: TimeSeriesCount<RoadID>,
    pub intersection_thruput: TimeSeriesCount<IntersectionID>,
    // TODO For traffic signals, intersection_thruput could theoretically use this. But that
    // requires occasionally expensive or complicated summing or merging over all directions of an
    // intersection. So for now, eat the file size cost.
    pub traffic_signal_thruput: TimeSeriesCount<CompressedMovementID>,

    /// Most fields in Analytics are cumulative over time, but this is just for the current moment
    /// in time.
    pub demand: BTreeMap<MovementID, usize>,

    // TODO Reconsider this one
    pub bus_arrivals: Vec<(Time, CarID, TransitRouteID, TransitStopID)>,
    /// For each passenger boarding, how long did they wait at the stop?
    pub passengers_boarding: BTreeMap<TransitStopID, Vec<(Time, TransitRouteID, Duration)>>,
    pub passengers_alighting: BTreeMap<TransitStopID, Vec<(Time, TransitRouteID)>>,

    pub started_trips: BTreeMap<TripID, Time>,
    /// Finish time, ID, mode, trip duration if successful (or None if cancelled)
    pub finished_trips: Vec<(Time, TripID, TripMode, Option<Duration>)>,

    /// Record different problems that each trip encounters.
    pub problems_per_trip: BTreeMap<TripID, Vec<(Time, Problem)>>,

    // TODO This subsumes finished_trips
    pub trip_log: Vec<(Time, TripID, Option<PathRequest>, TripPhaseType)>,

    // TODO Transit riders aren't represented here yet, just the vehicle they're riding.
    /// Only for traffic signals. The u8 is the movement index from a CompressedMovementID.
    pub intersection_delays: BTreeMap<IntersectionID, Vec<(u8, Time, Duration, AgentType)>>,

    /// Per parking lane or lot, when does a spot become filled (true) or free (false)
    pub parking_lane_changes: BTreeMap<LaneID, Vec<(Time, bool)>>,
    pub parking_lot_changes: BTreeMap<ParkingLotID, Vec<(Time, bool)>>,

    pub(crate) alerts: Vec<(Time, AlertLocation, String)>,

    /// For benchmarking, we may want to disable collecting data.
    record_anything: bool,
}

#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum Problem {
    /// A vehicle waited >30s, or a pedestrian waited >15s.
    IntersectionDelay(IntersectionID, Duration),
    /// A cyclist crossed an intersection with >4 connecting roads.
    ComplexIntersectionCrossing(IntersectionID),
    /// A pedestrian crossed an intersection with an Arterial street
    ArterialIntersectionCrossing(TurnID),
    /// Another vehicle wanted to over-take this cyclist somewhere on this lane or turn.
    OvertakeDesired(Traversable),
    /// Too many people are crossing the same sidewalk or crosswalk at the same time.
    PedestrianOvercrowding(Traversable),
}

impl Problem {
    /// Returns the rough location where the problem occurred -- just at the granularity of an
    /// entire lane, turn, or intersection.
    pub fn point(&self, map: &Map) -> Pt2D {
        match self {
            Problem::IntersectionDelay(i, _) | Problem::ComplexIntersectionCrossing(i) => {
                map.get_i(*i).polygon.center()
            }
            Problem::OvertakeDesired(on) | Problem::PedestrianOvercrowding(on) => {
                on.get_polyline(map).middle()
            }
            Problem::ArterialIntersectionCrossing(t) => map.get_t(*t).geom.middle(),
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum ProblemType {
    IntersectionDelay,
    ComplexIntersectionCrossing,
    OvertakeDesired,
    ArterialIntersectionCrossing,
    PedestrianOvercrowding,
}

impl From<&Problem> for ProblemType {
    fn from(problem: &Problem) -> Self {
        match problem {
            Problem::IntersectionDelay(_, _) => Self::IntersectionDelay,
            Problem::ComplexIntersectionCrossing(_) => Self::ComplexIntersectionCrossing,
            Problem::OvertakeDesired(_) => Self::OvertakeDesired,
            Problem::ArterialIntersectionCrossing(_) => Self::ArterialIntersectionCrossing,
            Problem::PedestrianOvercrowding(_) => Self::PedestrianOvercrowding,
        }
    }
}

impl ProblemType {
    pub fn count(self, problems: &[(Time, Problem)]) -> usize {
        let mut cnt = 0;
        for (_, problem) in problems {
            if self == ProblemType::from(problem) {
                cnt += 1;
            }
        }
        cnt
    }

    pub fn all() -> Vec<ProblemType> {
        vec![
            ProblemType::IntersectionDelay,
            ProblemType::ComplexIntersectionCrossing,
            ProblemType::OvertakeDesired,
            ProblemType::ArterialIntersectionCrossing,
            ProblemType::PedestrianOvercrowding,
        ]
    }

    pub fn name(self) -> &'static str {
        match self {
            ProblemType::IntersectionDelay => "delays",
            ProblemType::ComplexIntersectionCrossing => {
                "where cyclists cross complex intersections"
            }
            ProblemType::OvertakeDesired => "where cars want to overtake cyclists",
            ProblemType::ArterialIntersectionCrossing => {
                "where pedestrians cross arterial intersections"
            }
            ProblemType::PedestrianOvercrowding => "where pedestrians are over-crowded",
        }
    }
}

impl Analytics {
    pub fn new(record_anything: bool) -> Analytics {
        Analytics {
            road_thruput: TimeSeriesCount::new(),
            intersection_thruput: TimeSeriesCount::new(),
            traffic_signal_thruput: TimeSeriesCount::new(),
            demand: BTreeMap::new(),
            bus_arrivals: Vec::new(),
            passengers_boarding: BTreeMap::new(),
            passengers_alighting: BTreeMap::new(),
            started_trips: BTreeMap::new(),
            finished_trips: Vec::new(),
            problems_per_trip: BTreeMap::new(),
            trip_log: Vec::new(),
            intersection_delays: BTreeMap::new(),
            parking_lane_changes: BTreeMap::new(),
            parking_lot_changes: BTreeMap::new(),
            alerts: Vec::new(),
            record_anything,
        }
    }

    pub fn event(&mut self, ev: Event, time: Time, map: &Map) {
        if !self.record_anything {
            return;
        }

        // Throughput
        if let Event::AgentEntersTraversable(a, _, to, passengers) = ev {
            match to {
                Traversable::Lane(l) => {
                    self.road_thruput.record(time, l.road, a.to_type(), 1);
                    if let Some(n) = passengers {
                        self.road_thruput
                            .record(time, l.road, AgentType::TransitRider, n);
                    }
                }
                Traversable::Turn(t) => {
                    self.intersection_thruput
                        .record(time, t.parent, a.to_type(), 1);
                    if let Some(n) = passengers {
                        self.intersection_thruput.record(
                            time,
                            t.parent,
                            AgentType::TransitRider,
                            n,
                        );
                    }

                    if let Some((id, compressed)) = map.get_movement_for_traffic_signal(t) {
                        *self.demand.entry(id).or_insert(0) -= 1;
                        self.traffic_signal_thruput
                            .record(time, compressed, a.to_type(), 1);
                        if let Some(n) = passengers {
                            self.traffic_signal_thruput.record(
                                time,
                                compressed,
                                AgentType::TransitRider,
                                n,
                            );
                        }
                    }
                }
            };
        }
        match ev {
            Event::PersonLeavesMap(_, Some(a), i) => {
                // Ignore cancelled trips
                self.intersection_thruput.record(time, i, a.to_type(), 1);
            }
            Event::PersonEntersMap(_, a, i) => {
                self.intersection_thruput.record(time, i, a.to_type(), 1);
            }
            _ => {}
        }

        // Bus arrivals
        if let Event::BusArrivedAtStop(bus, route, stop) = ev {
            self.bus_arrivals.push((time, bus, route, stop));
        }

        // Passengers boarding/alighting
        if let Event::PassengerBoardsTransit(_, _, route, stop, waiting) = ev {
            self.passengers_boarding
                .entry(stop)
                .or_insert_with(Vec::new)
                .push((time, route, waiting));
        }
        if let Event::PassengerAlightsTransit(_, _, route, stop) = ev {
            self.passengers_alighting
                .entry(stop)
                .or_insert_with(Vec::new)
                .push((time, route));
        }

        // Started trips
        if let Event::TripPhaseStarting(id, _, _, _) = ev {
            self.started_trips.entry(id).or_insert(time);
        }

        // Finished trips
        if let Event::TripFinished {
            trip,
            mode,
            total_time,
            ..
        } = ev
        {
            self.finished_trips
                .push((time, trip, mode, Some(total_time)));
        } else if let Event::TripCancelled(id, mode) = ev {
            self.started_trips.entry(id).or_insert(time);
            self.finished_trips.push((time, id, mode, None));
        }

        // Intersection delay
        if let Event::IntersectionDelayMeasured(trip_id, turn_id, agent, delay) = ev {
            let threshold = match agent {
                AgentID::Car(_) => Duration::seconds(30.0),
                AgentID::Pedestrian(_) => Duration::seconds(15.0),
                // Don't record for riders
                AgentID::BusPassenger(_, _) => Duration::hours(24),
            };
            if delay > threshold {
                self.problems_per_trip
                    .entry(trip_id)
                    .or_insert_with(Vec::new)
                    .push((time, Problem::IntersectionDelay(turn_id.parent, delay)));
            }

            // Save memory and space by only storing these measurements at traffic signals, for
            // turns that actually conflict (so no SharedSidewalkCorners).
            if let Some((_, compressed)) = map.get_movement_for_traffic_signal(turn_id) {
                self.intersection_delays
                    .entry(turn_id.parent)
                    .or_insert_with(Vec::new)
                    .push((compressed.idx, time, delay, agent.to_type()));
            }
        }

        // Parking spot changes
        if let Event::CarReachedParkingSpot(_, spot) = ev {
            if let ParkingSpot::Onstreet(l, _) = spot {
                self.parking_lane_changes
                    .entry(l)
                    .or_insert_with(Vec::new)
                    .push((time, true));
            } else if let ParkingSpot::Lot(pl, _) = spot {
                self.parking_lot_changes
                    .entry(pl)
                    .or_insert_with(Vec::new)
                    .push((time, true));
            }
        }
        if let Event::CarLeftParkingSpot(_, spot) = ev {
            if let ParkingSpot::Onstreet(l, _) = spot {
                self.parking_lane_changes
                    .entry(l)
                    .or_insert_with(Vec::new)
                    .push((time, false));
            } else if let ParkingSpot::Lot(pl, _) = spot {
                self.parking_lot_changes
                    .entry(pl)
                    .or_insert_with(Vec::new)
                    .push((time, false));
            }
        }

        // Safety metrics
        if let Event::AgentEntersTraversable(a, Some(trip), Traversable::Turn(t), _) = ev {
            if a.to_type() == AgentType::Bike && map.get_i(t.parent).roads.len() > 4 {
                // Defining a "large intersection" is tricky. If a road is split into two one-ways,
                // should we count it as two roads? If we haven't consolidated some crazy
                // intersection, we won't see it.
                self.problems_per_trip
                    .entry(trip)
                    .or_insert_with(Vec::new)
                    .push((time, Problem::ComplexIntersectionCrossing(t.parent)));
            }
        }

        if let Event::AgentEntersTraversable(a, Some(trip), Traversable::Turn(t), _) = ev {
            let turn = map.get_t(t);
            if a.to_type() == AgentType::Pedestrian && turn.is_crossing_arterial_intersection(map) {
                self.problems_per_trip
                    .entry(trip)
                    .or_insert_with(Vec::new)
                    .push((time, Problem::ArterialIntersectionCrossing(turn.id)));
            }
        }

        // TODO Kinda hacky, but these all consume the event, so kinda bundle em.
        match ev {
            Event::TripPhaseStarting(id, _, maybe_req, phase_type) => {
                self.trip_log.push((time, id, maybe_req, phase_type));
            }
            Event::TripCancelled(id, _) => {
                self.trip_log
                    .push((time, id, None, TripPhaseType::Cancelled));
            }
            Event::TripFinished { trip, .. } => {
                self.trip_log
                    .push((time, trip, None, TripPhaseType::Finished));
            }
            Event::PathAmended(path) => {
                self.record_demand(&path, map);
            }
            Event::Alert(loc, msg) => {
                self.alerts.push((time, loc, msg));
            }
            Event::ProblemEncountered(trip, problem) => {
                self.problems_per_trip
                    .entry(trip)
                    .or_insert_with(Vec::new)
                    .push((time, problem));
            }
            _ => {}
        }
    }

    pub fn record_demand(&mut self, path: &Path, map: &Map) {
        for step in path.get_steps() {
            if let Traversable::Turn(t) = step.as_traversable() {
                if let Some((id, _)) = map.get_movement_for_traffic_signal(t) {
                    *self.demand.entry(id).or_insert(0) += 1;
                }
            }
        }
    }

    // TODO If these ever need to be speeded up, just cache the histogram and index in the events
    // list.

    /// Ignores the current time. Returns None for cancelled trips.
    pub fn finished_trip_time(&self, trip: TripID) -> Option<Duration> {
        // TODO This is so inefficient!
        for (_, id, _, maybe_dt) in &self.finished_trips {
            if *id == trip {
                return *maybe_dt;
            }
        }
        None
    }

    /// Returns pairs of trip times for finished trips in both worlds. (ID, before, after, mode)
    pub fn both_finished_trips(
        &self,
        now: Time,
        before: &Analytics,
    ) -> Vec<(TripID, Duration, Duration, TripMode)> {
        let mut a = BTreeMap::new();
        for (t, id, _, maybe_dt) in &self.finished_trips {
            if *t > now {
                break;
            }
            if let Some(dt) = maybe_dt {
                a.insert(*id, *dt);
            }
        }

        let mut results = Vec::new();
        for (t, id, mode, maybe_dt) in &before.finished_trips {
            if *t > now {
                break;
            }
            if let Some(dt) = maybe_dt {
                if let Some(dt1) = a.remove(id) {
                    results.push((*id, *dt, dt1, *mode));
                }
            }
        }
        results
    }

    /// If calling on prebaked Analytics, be careful to pass in an unedited map, to match how the
    /// simulation was originally run. Otherwise the paths may be nonsense.
    pub fn get_trip_phases(&self, trip: TripID, map: &Map) -> Vec<TripPhase> {
        let mut phases: Vec<TripPhase> = Vec::new();
        for (t, id, maybe_req, phase_type) in &self.trip_log {
            if *id != trip {
                continue;
            }
            if let Some(ref mut last) = phases.last_mut() {
                last.end_time = Some(*t);
            }
            if *phase_type == TripPhaseType::Finished || *phase_type == TripPhaseType::Cancelled {
                break;
            }
            phases.push(TripPhase {
                start_time: *t,
                end_time: None,
                path: maybe_req.clone().and_then(|req| map.pathfind(req).ok()),
                has_path_req: maybe_req.is_some(),
                phase_type: *phase_type,
            })
        }
        phases
    }

    pub fn get_all_trip_phases(&self) -> BTreeMap<TripID, Vec<TripPhase>> {
        let mut trips = BTreeMap::new();
        for (t, id, maybe_req, phase_type) in &self.trip_log {
            let phases: &mut Vec<TripPhase> = trips.entry(*id).or_insert_with(Vec::new);
            if let Some(ref mut last) = phases.last_mut() {
                last.end_time = Some(*t);
            }
            if *phase_type == TripPhaseType::Finished {
                continue;
            }
            // Remove cancelled trips
            if *phase_type == TripPhaseType::Cancelled {
                trips.remove(id);
                continue;
            }
            phases.push(TripPhase {
                start_time: *t,
                end_time: None,
                // Don't compute any paths
                path: None,
                has_path_req: maybe_req.is_some(),
                phase_type: *phase_type,
            })
        }
        trips
    }

    pub fn active_agents(&self, now: Time) -> Vec<(Time, usize)> {
        let mut starts_stops: Vec<(Time, bool)> = Vec::new();
        for t in self.started_trips.values() {
            if *t <= now {
                starts_stops.push((*t, false));
            }
        }
        for (t, _, _, _) in &self.finished_trips {
            if *t > now {
                break;
            }
            starts_stops.push((*t, true));
        }
        // Make sure the start events get sorted before the stops.
        starts_stops.sort();

        let mut pts = Vec::new();
        let mut cnt = 0;
        let mut last_t = Time::START_OF_DAY;
        for (t, ended) in starts_stops {
            if t != last_t {
                // Step functions. Don't interpolate.
                pts.push((last_t, cnt));
            }
            last_t = t;
            if ended {
                // release mode disables this check, so...
                if cnt == 0 {
                    panic!("active_agents at {} has more ended trips than started", t);
                }
                cnt -= 1;
            } else {
                cnt += 1;
            }
        }
        pts.push((last_t, cnt));
        if last_t != now {
            pts.push((now, cnt));
        }
        pts
    }

    /// Returns the free spots over time
    pub fn parking_lane_availability(
        &self,
        now: Time,
        l: LaneID,
        capacity: usize,
    ) -> Vec<(Time, usize)> {
        if let Some(changes) = self.parking_lane_changes.get(&l) {
            Analytics::parking_spot_availability(now, changes, capacity)
        } else {
            vec![(Time::START_OF_DAY, capacity), (now, capacity)]
        }
    }
    pub fn parking_lot_availability(
        &self,
        now: Time,
        pl: ParkingLotID,
        capacity: usize,
    ) -> Vec<(Time, usize)> {
        if let Some(changes) = self.parking_lot_changes.get(&pl) {
            Analytics::parking_spot_availability(now, changes, capacity)
        } else {
            vec![(Time::START_OF_DAY, capacity), (now, capacity)]
        }
    }

    fn parking_spot_availability(
        now: Time,
        changes: &[(Time, bool)],
        capacity: usize,
    ) -> Vec<(Time, usize)> {
        let mut pts = Vec::new();
        let mut cnt = capacity;
        let mut last_t = Time::START_OF_DAY;

        for (t, filled) in changes {
            if *t > now {
                break;
            }
            if *t != last_t {
                // Step functions. Don't interpolate.
                pts.push((last_t, cnt));
            }
            last_t = *t;
            if *filled {
                if cnt == 0 {
                    panic!("parking_spot_availability at {} went below 0", t);
                }
                cnt -= 1;
            } else {
                cnt += 1;
            }
        }
        pts.push((last_t, cnt));
        if last_t != now {
            pts.push((now, cnt));
        }
        pts
    }

    pub fn problems_per_intersection(
        &self,
        now: Time,
        id: IntersectionID,
    ) -> Vec<(ProblemType, Vec<(Time, usize)>)> {
        let window_size = Duration::minutes(15);

        let mut raw_per_type: BTreeMap<ProblemType, Vec<Time>> = BTreeMap::new();
        for problem_type in ProblemType::all() {
            raw_per_type.insert(problem_type, Vec::new());
        }

        for (_, problems) in &self.problems_per_trip {
            for (time, problem) in problems {
                if *time > now {
                    break;
                }
                let i = match problem {
                    Problem::IntersectionDelay(i, _) | Problem::ComplexIntersectionCrossing(i) => {
                        *i
                    }
                    Problem::OvertakeDesired(on) | Problem::PedestrianOvercrowding(on) => {
                        match on {
                            Traversable::Turn(t) => t.parent,
                            _ => {
                                continue;
                            }
                        }
                    }
                    Problem::ArterialIntersectionCrossing(t) => t.parent,
                };
                if id == i {
                    raw_per_type
                        .get_mut(&ProblemType::from(problem))
                        .unwrap()
                        .push(*time);
                }
            }
        }

        let mut result = Vec::new();
        for (problem_type, mut raw) in raw_per_type {
            raw.sort();
            let mut pts = vec![(Time::START_OF_DAY, 0)];
            let mut window = SlidingWindow::new(window_size);
            for t in raw {
                let count = window.add(t);
                pts.push((t, count));
            }
            window.close_off_pts(&mut pts, now);
            result.push((problem_type, pts));
        }
        result
    }

    pub fn problems_per_lane(
        &self,
        now: Time,
        id: LaneID,
    ) -> Vec<(ProblemType, Vec<(Time, usize)>)> {
        let window_size = Duration::minutes(15);

        let mut raw_per_type: BTreeMap<ProblemType, Vec<Time>> = BTreeMap::new();
        for problem_type in ProblemType::all() {
            raw_per_type.insert(problem_type, Vec::new());
        }

        for (_, problems) in &self.problems_per_trip {
            for (time, problem) in problems {
                if *time > now {
                    break;
                }
                let l = match problem {
                    Problem::OvertakeDesired(on) | Problem::PedestrianOvercrowding(on) => {
                        match on {
                            Traversable::Lane(l) => *l,
                            _ => {
                                continue;
                            }
                        }
                    }
                    _ => {
                        continue;
                    }
                };
                if id == l {
                    raw_per_type
                        .get_mut(&ProblemType::from(problem))
                        .unwrap()
                        .push(*time);
                }
            }
        }

        let mut result = Vec::new();
        for (problem_type, mut raw) in raw_per_type {
            raw.sort();
            let mut pts = vec![(Time::START_OF_DAY, 0)];
            let mut window = SlidingWindow::new(window_size);
            for t in raw {
                let count = window.add(t);
                pts.push((t, count));
            }
            window.close_off_pts(&mut pts, now);
            result.push((problem_type, pts));
        }
        result
    }
}

impl Default for Analytics {
    fn default() -> Analytics {
        Analytics::new(false)
    }
}

#[derive(Debug)]
pub struct TripPhase {
    pub start_time: Time,
    pub end_time: Option<Time>,
    pub path: Option<Path>,
    pub has_path_req: bool,
    pub phase_type: TripPhaseType,
}

/// See https://github.com/a-b-street/abstreet/issues/85
#[derive(Clone, Serialize, Deserialize)]
pub struct TimeSeriesCount<X: Ord + Clone> {
    /// (Road or intersection, type, hour block) -> count for that hour
    pub counts: BTreeMap<(X, AgentType, usize), usize>,

    /// Very expensive to store, so it's optional. But useful to flag on to experiment with
    /// representations better than the hour count above.
    pub raw: Vec<(Time, AgentType, X)>,
}

impl<X: Ord + Clone> TimeSeriesCount<X> {
    fn new() -> TimeSeriesCount<X> {
        TimeSeriesCount {
            counts: BTreeMap::new(),
            raw: Vec::new(),
        }
    }

    fn record(&mut self, time: Time, id: X, agent_type: AgentType, count: usize) {
        // TODO Manually change flag
        if false {
            // TODO Woo, handling transit passengers is even more expensive in this already
            // expensive representation...
            for _ in 0..count {
                self.raw.push((time, agent_type, id.clone()));
            }
        }

        *self
            .counts
            .entry((id, agent_type, time.get_hours()))
            .or_insert(0) += count;
    }

    pub fn total_for(&self, id: X) -> usize {
        self.total_for_with_agent_types(id, AgentType::all().into_iter().collect())
    }

    pub fn total_for_with_agent_types(&self, id: X, agent_types: BTreeSet<AgentType>) -> usize {
        let mut cnt = 0;
        for agent_type in agent_types {
            // TODO Hmm
            for hour in 0..24 {
                cnt += self
                    .counts
                    .get(&(id.clone(), agent_type, hour))
                    .cloned()
                    .unwrap_or(0);
            }
        }
        cnt
    }

    pub fn total_for_by_time(&self, id: X, now: Time) -> usize {
        let mut cnt = 0;
        for agent_type in AgentType::all() {
            for hour in 0..=now.get_hours() {
                cnt += self
                    .counts
                    .get(&(id.clone(), agent_type, hour))
                    .cloned()
                    .unwrap_or(0);
            }
        }
        cnt
    }

    pub fn all_total_counts(&self, agent_types: &BTreeSet<AgentType>) -> Counter<X> {
        let mut cnt = Counter::new();
        for ((id, agent_type, _), value) in &self.counts {
            if agent_types.contains(agent_type) {
                cnt.add(id.clone(), *value);
            }
        }
        cnt
    }

    pub fn count_per_hour(&self, id: X, time: Time) -> Vec<(AgentType, Vec<(Time, usize)>)> {
        let hour = time.get_hours();
        let mut results = Vec::new();
        for agent_type in AgentType::all() {
            let mut pts = Vec::new();
            for hour in 0..=hour {
                let cnt = self
                    .counts
                    .get(&(id.clone(), agent_type, hour))
                    .cloned()
                    .unwrap_or(0);
                pts.push((Time::START_OF_DAY + Duration::hours(hour), cnt));
                pts.push((Time::START_OF_DAY + Duration::hours(hour + 1), cnt));
            }
            pts.pop();
            results.push((agent_type, pts));
        }
        results
    }

    pub fn raw_throughput(&self, now: Time, id: X) -> Vec<(AgentType, Vec<(Time, usize)>)> {
        let window_size = Duration::hours(1);
        let mut pts_per_type: BTreeMap<AgentType, Vec<(Time, usize)>> = BTreeMap::new();
        let mut windows_per_type: BTreeMap<AgentType, SlidingWindow> = BTreeMap::new();
        for agent_type in AgentType::all() {
            pts_per_type.insert(agent_type, vec![(Time::START_OF_DAY, 0)]);
            windows_per_type.insert(agent_type, SlidingWindow::new(window_size));
        }

        for (t, agent_type, x) in &self.raw {
            if *x != id {
                continue;
            }
            if *t > now {
                break;
            }

            let count = windows_per_type.get_mut(agent_type).unwrap().add(*t);
            pts_per_type.get_mut(agent_type).unwrap().push((*t, count));
        }

        for (agent_type, pts) in pts_per_type.iter_mut() {
            let mut window = windows_per_type.remove(agent_type).unwrap();

            window.close_off_pts(pts, now);
        }

        pts_per_type.into_iter().collect()
    }

    /// Returns the contents of a CSV file
    pub fn export_csv<F: Fn(&X) -> usize>(&self, extract_id: F) -> String {
        let mut out = String::new();
        writeln!(out, "id,agent_type,hour,count").unwrap();
        for ((id, agent_type, hour), count) in &self.counts {
            writeln!(
                out,
                "{},{:?},{},{}",
                extract_id(id),
                agent_type,
                hour,
                count
            )
            .unwrap();
        }
        out
    }
}

/// A sliding window, used to count something over time
pub struct SlidingWindow {
    times: VecDeque<Time>,
    window_size: Duration,
}

impl SlidingWindow {
    pub fn new(window_size: Duration) -> SlidingWindow {
        SlidingWindow {
            times: VecDeque::new(),
            window_size,
        }
    }

    /// Returns the count at time
    pub fn add(&mut self, time: Time) -> usize {
        self.times.push_back(time);
        self.count(time)
    }

    /// Grab the count at this time, but don't add a new time
    pub fn count(&mut self, end: Time) -> usize {
        while !self.times.is_empty() && end - *self.times.front().unwrap() > self.window_size {
            self.times.pop_front();
        }
        self.times.len()
    }

    /// Ensure the points cover up to `end_time`. The last event may occur before then, and it's
    /// necessary to draw more points to show the count drop off.
    pub fn close_off_pts(&mut self, pts: &mut Vec<(Time, usize)>, end_time: Time) {
        // Add a drop-off after window_size (+ a little epsilon!)
        let t = (pts.last().unwrap().0 + self.window_size + Duration::seconds(0.1)).min(end_time);
        if pts.last().unwrap().0 != t {
            pts.push((t, self.count(t)));
        }

        if pts.last().unwrap().0 != end_time {
            pts.push((end_time, self.count(end_time)));
        }
    }
}