1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
use geom::{Distance, PolyLine, Pt2D, EPSILON_DIST};
use crate::{
Direction, DrivingSide, Intersection, IntersectionID, Lane, LaneID, Map, Turn, TurnID, TurnType,
};
/// Looks at all sidewalks (or lack thereof) in counter-clockwise order around an intersection.
/// Based on adjacency, create a SharedSidewalkCorner or a Crosswalk.
/// UnmarkedCrossings are not generated here; another process later "downgrades" crosswalks to
/// unmarked.
pub fn make_walking_turns(map: &Map, i: &Intersection) -> Vec<Turn> {
let driving_side = map.config.driving_side;
// Consider all roads in counter-clockwise order. Every road has up to two sidewalks. Gather
// those in order, remembering what roads don't have them.
let mut lanes: Vec<Option<&Lane>> = Vec::new();
let mut sorted_roads = i.roads.clone();
// And for left-handed driving, we need to walk around in the opposite order.
if driving_side == DrivingSide::Left {
sorted_roads.reverse();
}
for r in sorted_roads {
let road = map.get_r(r);
let mut fwd = None;
let mut back = None;
for l in &road.lanes {
if l.lane_type.is_walkable() {
if l.dir == Direction::Fwd {
fwd = Some(l);
} else {
back = Some(l);
}
}
}
let (in_lane, out_lane) = if road.src_i == i.id {
(back, fwd)
} else {
(fwd, back)
};
// Don't add None entries for footways even if they only have one lane
if map.get_r(r).is_footway() {
if in_lane.is_some() {
lanes.push(in_lane);
}
if out_lane.is_some() {
lanes.push(out_lane);
}
} else {
lanes.push(in_lane);
lanes.push(out_lane);
}
}
// If there are 0 or 1 sidewalks there are no turns to be made
if lanes.iter().filter(|l| l.is_some()).count() <= 1 {
return Vec::new();
}
// At a deadend make only one SharedSidewalkCorner
if i.is_deadend_for_everyone() {
let (l1, l2) = (lanes[0].unwrap(), lanes[1].unwrap());
return vec![Turn {
id: turn_id(i.id, l1.id, l2.id),
turn_type: TurnType::SharedSidewalkCorner,
geom: make_shared_sidewalk_corner(i, l1, l2),
}];
}
// Make sure we start with a sidewalk.
while lanes[0].is_none() {
lanes.rotate_left(1);
}
let mut result: Vec<Turn> = Vec::new();
let mut from: Option<&Lane> = lanes[0];
let mut adj = true;
for l in lanes.iter().skip(1).chain(lanes.iter().take(1)) {
if from.is_none() {
from = *l;
adj = true;
continue;
}
let l1 = from.unwrap();
if l.is_none() {
adj = false;
continue;
}
let l2 = l.unwrap();
if adj && l1.id.road != l2.id.road {
result.push(Turn {
id: turn_id(i.id, l1.id, l2.id),
turn_type: TurnType::SharedSidewalkCorner,
geom: make_shared_sidewalk_corner(i, l1, l2),
});
from = Some(l2);
// adj stays true
} else {
result.push(Turn {
id: turn_id(i.id, l1.id, l2.id),
turn_type: TurnType::Crosswalk,
geom: make_crosswalk(i, l1, l2),
});
from = Some(l2);
adj = true;
}
}
// If there are exactly two crosswalks they must be connected or opposite, so delete one.
// This happens at degenerate intersections with sidewalks on both sides or where a
// footway crosses a road without sidewalks.
// If there is one crosswalk it must be opposite to a SharedSidewalkCorner, because the
// above could never create just one turn and starts and ends in the same place.
// This happens at degenerate intersections with sidewalks on one side.
match result
.iter()
.filter(|t| t.turn_type == TurnType::Crosswalk)
.count()
{
1 | 2 => {
result.remove(
result
.iter()
.position(|t| t.turn_type == TurnType::Crosswalk)
.unwrap(),
);
}
_ => {}
}
result
}
/// Filter out crosswalks on really short roads. In reality, these roads are usually located within
/// an intersection, which isn't a valid place for a pedestrian crossing.
///
/// And if the road is marked as having no crosswalks at an end, downgrade them to unmarked
/// crossings.
pub fn filter_turns(mut input: Vec<Turn>, map: &Map, i: &Intersection) -> Vec<Turn> {
for r in &i.roads {
if map.get_r(*r).is_extremely_short() {
input.retain(|t| {
!(t.id.src.road == *r && t.id.dst.road == *r && t.turn_type.pedestrian_crossing())
});
}
}
for turn in &mut input {
if let Some(dr) = turn.crosswalk_over_road(map) {
let road = map.get_r(dr.road);
let keep = if dr.dir == Direction::Fwd {
road.crosswalk_forward
} else {
road.crosswalk_backward
};
if !keep {
turn.turn_type = TurnType::UnmarkedCrossing;
}
} else if turn.turn_type.pedestrian_crossing() {
// We have a crosswalk over multiple roads (or sometimes, just one road that only has a
// walkable lane on one side of it). We can't yet detect all the roads crossed. So for
// now, it's more often correct to assume that if any nearby roads don't have a
// crossing snapped to both ends, then there's probably no crosswalk here.
for l in [turn.id.src, turn.id.dst] {
let road = map.get_parent(l);
if !road.crosswalk_forward || !road.crosswalk_backward {
turn.turn_type = TurnType::UnmarkedCrossing;
}
}
}
}
input
}
fn make_crosswalk(i: &Intersection, l1: &Lane, l2: &Lane) -> PolyLine {
let l1_line = l1.end_line(i.id);
let l2_line = l2.end_line(i.id);
// Jut out a bit into the intersection, cross over, then jut back in.
// Put degenerate intersection crosswalks in the middle (DEGENERATE_HALF_LENGTH).
PolyLine::deduping_new(vec![
l1_line.pt2(),
l1_line.unbounded_dist_along(
l1_line.length()
+ if i.is_degenerate() {
Distance::const_meters(2.5)
} else {
l1.width / 2.0
},
),
l2_line.unbounded_dist_along(
l2_line.length()
+ if i.is_degenerate() {
Distance::const_meters(2.5)
} else {
l2.width / 2.0
},
),
l2_line.pt2(),
])
.unwrap_or_else(|_| baseline_geometry(l1.endpoint(i.id), l2.endpoint(i.id)))
}
// TODO This doesn't handle sidewalk/shoulder transitions
fn make_shared_sidewalk_corner(i: &Intersection, l1: &Lane, l2: &Lane) -> PolyLine {
// We'll fallback to this if the fancier geometry fails.
let baseline = baseline_geometry(l1.endpoint(i.id), l2.endpoint(i.id));
// Is point2 counter-clockwise of point1?
let dir = if i
.polygon
.center()
.angle_to(l1.endpoint(i.id))
.simple_shortest_rotation_towards(i.polygon.center().angle_to(l2.endpoint(i.id)))
> 0.0
{
1.0
} else {
-1.0
// For deadends, go the long way around
} * if i.is_deadend_for_everyone() {
-1.0
} else {
1.0
};
// Find all of the points on the intersection polygon between the two sidewalks. Assumes
// sidewalks are the same length.
let corner1 = l1
.end_line(i.id)
.shift_either_direction(dir * l1.width / 2.0)
.pt2();
let corner2 = l2
.end_line(i.id)
.shift_either_direction(-dir * l2.width / 2.0)
.pt2();
// TODO Something like this will be MUCH simpler and avoid going around the long way sometimes.
if false {
return i
.polygon
.get_outer_ring()
.get_shorter_slice_btwn(corner1, corner2)
.unwrap();
}
// The order of the points here seems backwards, but it's because we scan from corner2
// to corner1 below.
let mut pts_between = vec![l2.endpoint(i.id)];
// Intersection polygons are constructed in clockwise order, so do corner2 to corner1.
let mut i_pts = i.polygon.get_outer_ring().clone().into_points();
// last pt = first_pt
i_pts.pop();
if dir < 0.0 {
i_pts.reverse();
}
for _ in 0..i_pts.len() {
if i_pts[0].approx_eq(corner2, Distance::meters(0.5)) {
break;
}
i_pts.rotate_left(1);
}
for idx in 0..i_pts.len() {
if i_pts[idx].approx_eq(corner1, Distance::meters(0.5)) {
i_pts.truncate(idx + 1);
break;
}
}
if i_pts.len() < 2 {
// no intermediate points, so just do a straight line
return baseline;
}
if let Ok(pl) = PolyLine::new(i_pts)
.and_then(|pl| pl.shift_either_direction(dir * l1.width.min(l2.width) / 2.0))
{
// The first and last points should be approximately l2's and l1's endpoints
pts_between.extend(pl.points().iter().take(pl.points().len() - 1).skip(1));
} else {
warn!(
"SharedSidewalkCorner between {} and {} has weird collapsing geometry, so \
just doing straight line",
l1.id, l2.id
);
return baseline;
}
pts_between.push(l1.endpoint(i.id));
pts_between.dedup();
pts_between.reverse();
if abstutil::contains_duplicates(
&pts_between
.iter()
.map(|pt| pt.to_hashable())
.collect::<Vec<_>>(),
) || pts_between.len() < 2
{
warn!(
"SharedSidewalkCorner between {} and {} has weird duplicate geometry, so just doing \
straight line",
l1.id, l2.id
);
return baseline;
}
if let Ok(result) = PolyLine::new(pts_between) {
if result.length() > 10.0 * baseline.length() {
warn!(
"SharedSidewalkCorner between {} and {} explodes to {} long, so just doing straight \
line",
l1.id,
l2.id,
result.length()
);
return baseline;
}
result
} else {
baseline
}
}
// Never in any circumstance should we produce a polyline with only one point (or two points
// that're equal), because it'll just crash downstream rendering logic and make a mess elsewhere.
// Avoid that here. The result is unlikely to look correct (or be easily visible at all).
//
// TODO Proper fix is likely to make a turn's geometry optional.
fn baseline_geometry(pt1: Pt2D, pt2: Pt2D) -> PolyLine {
PolyLine::new(vec![pt1, pt2]).unwrap_or_else(|_| {
PolyLine::must_new(vec![
pt1,
pt1.offset(EPSILON_DIST.inner_meters(), EPSILON_DIST.inner_meters()),
])
})
}
fn turn_id(parent: IntersectionID, src: LaneID, dst: LaneID) -> TurnID {
TurnID { parent, src, dst }
}