1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
use std::collections::{BTreeSet, HashMap, VecDeque};
use serde::{Deserialize, Serialize};
use abstutil::FixedMap;
use geom::{Distance, Time};
use map_model::{Map, Position, Traversable};
use crate::mechanics::car::{Car, CarState};
use crate::{CarID, VehicleType, FOLLOWING_DISTANCE};
/// A Queue of vehicles on a single lane or turn. This is where
/// https://a-b-street.github.io/docs/tech/trafficsim/discrete_event.html#exact-positions is
/// implemented.
///
/// Some helpful pieces of terminology:
///
/// - a "laggy head" is a vehicle whose front is now past the end of this queue, but whose back may
/// still be partially in the queue. The position of the first car in the queue is still bounded
/// by the laggy head's back.
/// - a "static blockage" is due to a vehicle exiting a driveway and immediately cutting across a
/// few lanes. The "static" part means it occupies a fixed interval of distance in the queue. When
/// the vehicle is finished exiting the driveway, this blockage is removed.
/// - a "dynamic blockage" is due to a vehicle changing lanes in the middle of the queue. The exact
/// position of the blockage in this queue is unknown (it depends on the target queue). The
/// blockage just occupies the length of the vehicle and keeps following whatever's in front of
/// it.
/// - "active cars" are the main members of the queue -- everything except for laggy heads and
/// blockages.
#[derive(Serialize, Deserialize, Clone, Debug)]
pub(crate) struct Queue {
pub id: Traversable,
members: VecDeque<Queued>,
/// This car's back is still partly in this queue.
pub laggy_head: Option<CarID>,
/// How long the lane or turn physically is.
pub geom_len: Distance,
/// When a car's turn is accepted, reserve the vehicle length + FOLLOWING_DISTANCE for the
/// target lane. When the car completely leaves (stops being the laggy_head), free up that
/// space. To prevent blocking the box for possibly scary amounts of time, allocate some of
/// this length first. This is unused for turns themselves. This value can exceed geom_len
/// (for the edge case of ONE long car on a short queue).
pub reserved_length: Distance,
}
/// A member of a `Queue`.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
pub enum Queued {
/// A regular vehicle trying to move forwards
Vehicle(CarID),
/// Something occupying a fixed interval of distance on the queue
StaticBlockage {
/// This vehicle is exiting a driveway and cutting across a few lanes
cause: CarID,
front: Distance,
back: Distance,
},
/// This follows whatever's in front of it
DynamicBlockage {
/// This vehicle is in the middle of changing lanes
cause: CarID,
vehicle_len: Distance,
},
}
/// The exact position of something in a `Queue` at some time
#[derive(Clone, Debug)]
pub struct QueueEntry {
pub member: Queued,
pub front: Distance,
/// Not including FOLLOWING_DISTANCE
pub back: Distance,
}
impl Queue {
pub fn new(id: Traversable, map: &Map) -> Queue {
Queue {
id,
members: VecDeque::new(),
laggy_head: None,
geom_len: id.get_polyline(map).length(),
reserved_length: Distance::ZERO,
}
}
/// Get the front of the last car in the queue.
pub fn get_last_car_position(
&self,
now: Time,
cars: &FixedMap<CarID, Car>,
queues: &HashMap<Traversable, Queue>,
) -> Option<(CarID, Distance)> {
self.inner_get_last_car_position(now, cars, queues, &mut BTreeSet::new(), None)
}
/// Return the exact position of each member of the queue. The farthest along (greatest distance) is first.
pub fn get_car_positions(
&self,
now: Time,
cars: &FixedMap<CarID, Car>,
queues: &HashMap<Traversable, Queue>,
) -> Vec<QueueEntry> {
let mut all_cars = vec![];
self.inner_get_last_car_position(
now,
cars,
queues,
&mut BTreeSet::new(),
Some(&mut all_cars),
);
all_cars
}
/// Returns the front of the last car in the queue, only if the last member is an active car.
fn inner_get_last_car_position(
&self,
now: Time,
cars: &FixedMap<CarID, Car>,
queues: &HashMap<Traversable, Queue>,
recursed_queues: &mut BTreeSet<Traversable>,
mut intermediate_results: Option<&mut Vec<QueueEntry>>,
) -> Option<(CarID, Distance)> {
if self.members.is_empty() {
return None;
}
// TODO Consider simplifying this loop's structure. Calculate the bound here before
// starting the loop, handling the laggy head case.
let mut previous: Option<QueueEntry> = None;
for queued in self.members.iter().cloned() {
let bound = match previous {
Some(entry) => entry.back - FOLLOWING_DISTANCE,
None => match self.laggy_head {
Some(id) => {
// The simple but broken version:
//self.geom_len - cars[&id].vehicle.length - FOLLOWING_DISTANCE
// The expensive case. We need to figure out exactly where the laggy head
// is on their queue.
let leader = &cars[&id];
// But don't create a cycle!
let recurse_to = leader.router.head();
if recursed_queues.contains(&recurse_to) {
// See the picture in
// https://github.com/a-b-street/abstreet/issues/30. We have two
// extremes to break the cycle.
//
// 1) Hope that the last person in this queue isn't bounded by the
// agent in front of them yet. geom_len
// 2) Assume the leader has advanced minimally into the next lane.
// geom_len - laggy head's length - FOLLOWING_DISTANCE.
//
// For now, optimistically assume 1. If we're wrong, consequences could
// be queue spillover (we're too optimistic about the number of
// vehicles that can fit on a lane) or cars jumping positions slightly
// while the cycle occurs.
self.geom_len
} else {
recursed_queues.insert(recurse_to);
let (head, head_dist) = queues[&leader.router.head()]
.inner_get_last_car_position(
now,
cars,
queues,
recursed_queues,
None,
)
.unwrap();
assert_eq!(head, id);
let mut dist_away_from_this_queue = head_dist;
for on in &leader.last_steps {
if *on == self.id {
break;
}
dist_away_from_this_queue += queues[on].geom_len;
}
// They might actually be out of the way, but laggy_head hasn't been
// updated yet.
if dist_away_from_this_queue
< leader.vehicle.length + FOLLOWING_DISTANCE
{
self.geom_len
- (cars[&id].vehicle.length - dist_away_from_this_queue)
- FOLLOWING_DISTANCE
} else {
self.geom_len
}
}
}
None => self.geom_len,
},
};
// There's spillover and a car shouldn't have been able to enter yet.
if bound < Distance::ZERO {
if let Some(intermediate_results) = intermediate_results {
dump_cars(intermediate_results, cars, self.id, now);
}
panic!(
"Queue has spillover on {} at {} -- can't draw {:?}, bound is {}. Laggy head is \
{:?}. This is usually a geometry bug; check for duplicate roads going \
between the same intersections.",
self.id, now, queued, bound, self.laggy_head
);
}
let entry = match queued {
Queued::Vehicle(id) => {
let car = &cars[&id];
let front = match car.state {
CarState::Queued { .. } => {
if car.router.last_step() {
car.router.get_end_dist().min(bound)
} else {
bound
}
}
CarState::WaitingToAdvance { .. } => {
if bound != self.geom_len {
if let Some(intermediate_results) = intermediate_results {
dump_cars(intermediate_results, cars, self.id, now);
}
panic!("{} is waiting to advance on {}, but the current bound is {}, not geom_len {}. How can anything be in front of them?", id, self.id, bound, self.geom_len);
}
self.geom_len
}
CarState::Crossing {
ref time_int,
ref dist_int,
..
} => {
// TODO Why percent_clamp_end? We process car updates in any order, so we might
// calculate this before moving this car from Crossing to another state.
dist_int.lerp(time_int.percent_clamp_end(now)).min(bound)
}
CarState::ChangingLanes {
ref new_time,
ref new_dist,
..
} => {
// Same as the Crossing logic
new_dist.lerp(new_time.percent_clamp_end(now)).min(bound)
}
CarState::Unparking { front, .. } => front,
CarState::Parking(front, _, _) => front,
CarState::IdlingAtStop(front, _) => front,
};
QueueEntry {
member: queued,
front,
back: front - car.vehicle.length,
}
}
Queued::StaticBlockage { front, back, .. } => QueueEntry {
member: queued,
front,
back,
},
Queued::DynamicBlockage { vehicle_len, .. } => QueueEntry {
member: queued,
// This is a reasonable guess, because a vehicle only starts changing lanes if
// there's something slower in front of it. So we assume that slow vehicle
// continues to exist for the 1 second that lane-changing takes. If for some
// reason that slower leader vanishes, this bound could jump up, which just
// causes anything following the lane-changing vehicle to be able to go a
// little faster.
front: bound,
back: bound - vehicle_len,
},
};
if let Some(ref mut intermediate_results) = intermediate_results {
intermediate_results.push(entry.clone());
}
previous = Some(entry);
}
// Enable to detect possible bugs, but save time otherwise
if false {
if let Some(intermediate_results) = intermediate_results {
validate_positions(intermediate_results, cars, now, self.id)
}
}
let previous = previous?;
match previous.member {
Queued::Vehicle(car) => Some((car, previous.front)),
Queued::StaticBlockage { .. } => None,
Queued::DynamicBlockage { .. } => None,
}
}
/// If the specified car can appear in the queue, return the position in the queue to do so.
pub fn get_idx_to_insert_car(
&self,
start_dist: Distance,
vehicle_len: Distance,
now: Time,
cars: &FixedMap<CarID, Car>,
queues: &HashMap<Traversable, Queue>,
) -> Option<usize> {
if self.laggy_head.is_none() && self.members.is_empty() {
return Some(0);
}
let dists = self.get_car_positions(now, cars, queues);
// TODO Binary search
let idx = match dists.iter().position(|entry| start_dist >= entry.front) {
Some(i) => i,
None => dists.len(),
};
// Nope, there's not actually room at the front right now.
// (This is overly conservative; we could figure out exactly where the laggy head is and
// maybe allow it.)
if idx == 0 {
if let Some(c) = self.laggy_head {
// We don't know exactly where the laggy head is. So assume the worst case; that
// they've just barely started the turn, and we have to use the same
// too-close-to-leader math.
//
// TODO We can be more precise! We already call get_car_positions, and that
// calculates exactly where the laggy head is. We just need to plumb that bound
// back here.
if self.geom_len - cars[&c].vehicle.length - FOLLOWING_DISTANCE < start_dist {
return None;
}
}
}
// Are we too close to the leader?
if idx != 0 && dists[idx - 1].back - FOLLOWING_DISTANCE < start_dist {
return None;
}
// Or the follower?
if idx != dists.len() && start_dist - vehicle_len - FOLLOWING_DISTANCE < dists[idx].front {
return None;
}
Some(idx)
}
/// Record that a car has entered a queue at a position. This must match get_idx_to_insert_car
/// -- the same index and immediately after passing that query.
pub fn insert_car_at_idx(&mut self, idx: usize, car: &Car) {
self.members.insert(idx, Queued::Vehicle(car.vehicle.id));
self.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
}
/// Record that a car has entered a queue at the end. It's assumed that try_to_reserve_entry
/// has already happened.
pub fn push_car_onto_end(&mut self, car: CarID) {
self.members.push_back(Queued::Vehicle(car));
}
/// Change the first car in the queue to the laggy head, indicating that it's front has left
/// the queue, but its back is still there. Return that car.
pub fn move_first_car_to_laggy_head(&mut self) -> CarID {
assert!(self.laggy_head.is_none());
let car = match self.members.pop_front() {
Some(Queued::Vehicle(c)) => c,
x => {
panic!(
"First member of {} is {:?}, not an active vehicle",
self.id, x
);
}
};
self.laggy_head = Some(car);
car
}
/// If true, there's room and the car must actually start the turn (because the space is
/// reserved).
pub fn try_to_reserve_entry(&mut self, car: &Car, force_entry: bool) -> bool {
// If self.reserved_length >= self.geom_len, then the lane is already full. Normally we
// won't allow more cars to start a turn towards it, but if force_entry is true, then we'll
// allow it.
// Sometimes a car + FOLLOWING_DISTANCE might be longer than the geom_len entirely. In that
// case, it just means the car won't totally fit on the queue at once, which is fine.
// Reserve the normal amount of space; the next car trying to enter will get rejected.
// Also allow this don't-block-the-box prevention to be disabled.
if self.room_for_car(car) || force_entry {
self.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
return true;
}
false
}
/// True if the reserved length exceeds the physical length. This means a vehicle is headed
/// towards the queue already and is expected to not fit entirely inside.
pub fn is_overflowing(&self) -> bool {
self.reserved_length >= self.geom_len
}
/// Can a car start a turn for this queue?
pub fn room_for_car(&self, car: &Car) -> bool {
self.reserved_length == Distance::ZERO
|| self.reserved_length + car.vehicle.length + FOLLOWING_DISTANCE < self.geom_len
}
/// Once a car has fully exited a queue, free up the space it was reserving.
pub fn free_reserved_space(&mut self, car: &Car) {
self.reserved_length -= car.vehicle.length + FOLLOWING_DISTANCE;
assert!(
self.reserved_length >= Distance::ZERO,
"invalid reserved length: {:?}, car: {:?}",
self.reserved_length,
car
);
}
/// Return a penalty for entering this queue, as opposed to some adjacent ones. Used for
/// lane-changing. (number of vehicles, is there a bike here)
pub fn target_lane_penalty(&self) -> (usize, usize) {
let mut num_vehicles = self.members.len();
if self.laggy_head.is_some() {
num_vehicles += 1;
}
let bike_cost = if self
.members
.iter()
.any(|x| matches!(x, Queued::Vehicle(c) if c.vehicle_type == VehicleType::Bike))
|| self
.laggy_head
.map(|c| c.vehicle_type == VehicleType::Bike)
.unwrap_or(false)
{
1
} else {
0
};
(num_vehicles, bike_cost)
}
/// Find the vehicle in front of the specified input. None if the specified vehicle isn't
/// ACTIVE (not a blockage) in the queue at all, or they're the front (with or without a laggy
/// head).
pub fn get_leader(&self, id: CarID) -> Option<CarID> {
let mut leader = None;
for queued in &self.members {
match queued {
Queued::Vehicle(car) => {
if *car == id {
return leader;
}
leader = Some(*car);
}
Queued::StaticBlockage { .. } | Queued::DynamicBlockage { .. } => {
leader = None;
}
}
}
None
}
/// Record that a car is blocking a static portion of the queue (from front to back). Must use
/// the index from can_block_from_driveway.
pub fn add_static_blockage(
&mut self,
cause: CarID,
front: Distance,
back: Distance,
idx: usize,
) {
assert!(front > back);
assert!(back >= FOLLOWING_DISTANCE);
let vehicle_len = front - back;
self.members
.insert(idx, Queued::StaticBlockage { cause, front, back });
self.reserved_length += vehicle_len + FOLLOWING_DISTANCE;
}
/// Record that a car is no longer blocking a static portion of the queue.
pub fn clear_static_blockage(&mut self, caused_by: CarID, idx: usize) {
let blockage = self.members.remove(idx).unwrap();
match blockage {
Queued::StaticBlockage { front, back, cause } => {
assert_eq!(caused_by, cause);
let vehicle_len = front - back;
self.reserved_length -= vehicle_len + FOLLOWING_DISTANCE;
}
_ => unreachable!(),
}
}
/// Record that a car is starting to change lanes away from this queue.
pub fn replace_car_with_dynamic_blockage(&mut self, car: &Car, idx: usize) {
self.remove_car_from_idx(car.vehicle.id, idx);
self.members.insert(
idx,
Queued::DynamicBlockage {
cause: car.vehicle.id,
vehicle_len: car.vehicle.length,
},
);
// We don't need to touch reserved_length -- it's still vehicle_len + FOLLOWING_DISTANCE
}
/// Record that a car is no longer blocking a dynamic portion of the queue.
pub fn clear_dynamic_blockage(&mut self, caused_by: CarID, idx: usize) {
let blockage = self.members.remove(idx).unwrap();
match blockage {
Queued::DynamicBlockage { cause, vehicle_len } => {
assert_eq!(caused_by, cause);
self.reserved_length -= vehicle_len + FOLLOWING_DISTANCE;
}
_ => unreachable!(),
}
}
/// True if a static blockage can be inserted into the queue without anything already there
/// intersecting it. Returns the index if so. The position represents the front of the
/// blockage.
pub fn can_block_from_driveway(
&self,
pos: &Position,
vehicle_len: Distance,
now: Time,
cars: &FixedMap<CarID, Car>,
queues: &HashMap<Traversable, Queue>,
) -> Option<usize> {
self.get_idx_to_insert_car(pos.dist_along(), vehicle_len, now, cars, queues)
}
/// Get all cars in the queue, not including the laggy head or blockages.
///
/// TODO Do NOT use this for calculating indices or getting the leader/follower. Might be safer
/// to just hide this and only expose number of active cars, first, and last.
pub fn get_active_cars(&self) -> Vec<CarID> {
self.members
.iter()
.filter_map(|x| match x {
Queued::Vehicle(c) => Some(*c),
Queued::StaticBlockage { .. } => None,
Queued::DynamicBlockage { .. } => None,
})
.collect()
}
/// Remove a car from a position. Need to separately do free_reserved_space.
pub fn remove_car_from_idx(&mut self, car: CarID, idx: usize) {
assert_eq!(self.members.remove(idx), Some(Queued::Vehicle(car)));
}
/// If a car thinks it's reached the end of the queue, double check. Blockages or laggy heads
/// might be in the way.
pub fn is_car_at_front(&self, car: CarID) -> bool {
self.laggy_head.is_none() && self.members.get(0) == Some(&Queued::Vehicle(car))
}
}
fn validate_positions(
dists: &[QueueEntry],
cars: &FixedMap<CarID, Car>,
now: Time,
id: Traversable,
) {
for pair in dists.windows(2) {
if pair[0].back - FOLLOWING_DISTANCE < pair[1].front {
dump_cars(dists, cars, id, now);
panic!(
"get_car_positions wound up with bad positioning: {} then {}\n{:?}",
pair[0].front, pair[1].front, dists
);
}
}
}
fn dump_cars(dists: &[QueueEntry], cars: &FixedMap<CarID, Car>, id: Traversable, now: Time) {
println!("\nOn {} at {}...", id, now);
for entry in dists {
println!("- {:?} @ {}..{}", entry.member, entry.front, entry.back);
match entry.member {
Queued::Vehicle(id) => match cars[&id].state {
CarState::Crossing {
ref time_int,
ref dist_int,
..
} => {
println!(
" Going {} .. {} during {} .. {}",
dist_int.start, dist_int.end, time_int.start, time_int.end
);
}
CarState::ChangingLanes {
ref new_time,
ref new_dist,
..
} => {
println!(
" Going {} .. {} during {} .. {}, also in the middle of lane-changing",
new_dist.start, new_dist.end, new_time.start, new_time.end
);
}
CarState::Queued { .. } => {
println!(" Queued currently");
}
CarState::WaitingToAdvance { .. } => {
println!(" WaitingToAdvance currently");
}
CarState::Unparking { ref time_int, .. } => {
println!(" Unparking during {} .. {}", time_int.start, time_int.end);
}
CarState::Parking(_, _, ref time_int) => {
println!(" Parking during {} .. {}", time_int.start, time_int.end);
}
CarState::IdlingAtStop(_, ref time_int) => {
println!(" Idling during {} .. {}", time_int.start, time_int.end);
}
},
Queued::StaticBlockage { cause, .. } => {
println!(" Static blockage by {}", cause);
}
Queued::DynamicBlockage { cause, vehicle_len } => {
println!(" Dynamic blockage of length {} by {}", vehicle_len, cause);
}
}
}
println!();
}