sim/router.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
//! For vehicles only, not pedestrians. Follows a Path from map_model, but can opportunistically
//! lane-change to avoid a slow lane, can can handle re-planning to look for available parking.
use std::collections::HashMap;
use serde::{Deserialize, Serialize};
use geom::Distance;
use map_model::{
BuildingID, IntersectionID, LaneID, Map, Path, PathConstraints, PathRequest, PathStep,
Position, Traversable, Turn, TurnID,
};
use crate::mechanics::Queue;
use crate::{
AlertLocation, CarID, Event, ParkingSim, ParkingSimState, ParkingSpot, PersonID, SidewalkSpot,
TripID, TripPhaseType, Vehicle, VehicleType,
};
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
pub(crate) struct Router {
/// Front is always the current step
path: Path,
goal: Goal,
owner: CarID,
}
#[derive(Debug)]
pub(crate) enum ActionAtEnd {
VanishAtBorder(IntersectionID),
StartParking(ParkingSpot),
GotoLaneEnd,
StopBiking(SidewalkSpot),
BusAtStop,
GiveUpOnParking,
}
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
enum Goal {
/// Spot and cached distance along the last driving lane
ParkNearBuilding {
target: BuildingID,
spot: Option<(ParkingSpot, Distance)>,
/// No parking available at all!
stuck_end_dist: Option<Distance>,
started_looking: bool,
},
EndAtBorder {
end_dist: Distance,
i: IntersectionID,
},
BikeThenStop {
goal: SidewalkSpot,
},
FollowTransitRoute {
end_dist: Distance,
},
}
impl Router {
pub fn end_at_border(
owner: CarID,
path: Path,
end_dist: Distance,
i: IntersectionID,
) -> Router {
Router {
path,
goal: Goal::EndAtBorder { end_dist, i },
owner,
}
}
pub fn park_near(owner: CarID, path: Path, bldg: BuildingID) -> Router {
Router {
path,
goal: Goal::ParkNearBuilding {
target: bldg,
spot: None,
stuck_end_dist: None,
started_looking: false,
},
owner,
}
}
pub fn bike_then_stop(owner: CarID, path: Path, goal: SidewalkSpot) -> Router {
Router {
goal: Goal::BikeThenStop { goal },
path,
owner,
}
}
pub fn follow_bus_route(owner: CarID, path: Path) -> Router {
Router {
goal: Goal::FollowTransitRoute {
end_dist: path.get_req().end.dist_along(),
},
path,
owner,
}
}
pub fn head(&self) -> Traversable {
self.path.current_step().as_traversable()
}
pub fn next(&self) -> Traversable {
self.path.next_step().as_traversable()
}
pub fn maybe_next(&self) -> Option<Traversable> {
self.path.maybe_next_step().map(|s| s.as_traversable())
}
pub fn last_step(&self) -> bool {
self.path.is_last_step()
}
pub fn get_end_dist(&self) -> Distance {
// Shouldn't ask earlier!
assert!(self.last_step());
match self.goal {
Goal::EndAtBorder { end_dist, .. } => end_dist,
Goal::ParkNearBuilding {
spot,
stuck_end_dist,
..
} => stuck_end_dist.unwrap_or_else(|| spot.unwrap().1),
Goal::BikeThenStop { ref goal } => goal.sidewalk_pos.dist_along(),
Goal::FollowTransitRoute { end_dist } => end_dist,
}
}
pub fn get_path(&self) -> &Path {
&self.path
}
/// Returns the step just finished
pub fn advance(
&mut self,
vehicle: &Vehicle,
parking: &ParkingSimState,
map: &Map,
trip_and_person: Option<(TripID, PersonID)>,
events: &mut Vec<Event>,
) -> Traversable {
let prev = self.path.shift(map).as_traversable();
if self.last_step() {
// Do this to trigger the side-effect of looking for parking.
self.maybe_handle_end(
Distance::ZERO,
vehicle,
parking,
map,
trip_and_person,
events,
);
}
// Sanity check laws haven't been broken
if let Traversable::Lane(l) = self.head() {
let lane = map.get_l(l);
if !vehicle.vehicle_type.to_constraints().can_use(lane, map) {
panic!(
"{} just wound up on {}, a {:?} (check the OSM tags)",
vehicle.id, l, lane.lane_type
);
}
}
prev
}
/// Called when the car is Queued at the last step, or when they initially advance to the last
/// step.
pub fn maybe_handle_end(
&mut self,
front: Distance,
vehicle: &Vehicle,
parking: &ParkingSimState,
map: &Map,
// TODO Not so nice to plumb all of this here
trip_and_person: Option<(TripID, PersonID)>,
events: &mut Vec<Event>,
) -> Option<ActionAtEnd> {
assert!(self.path.is_last_step());
match self.goal {
Goal::EndAtBorder { end_dist, i } => {
if end_dist == front {
Some(ActionAtEnd::VanishAtBorder(i))
} else {
None
}
}
Goal::ParkNearBuilding {
ref mut spot,
ref mut stuck_end_dist,
target,
ref mut started_looking,
} => {
if let Some(d) = stuck_end_dist {
if *d == front {
return Some(ActionAtEnd::GiveUpOnParking);
} else {
return None;
}
}
let need_new_spot = match spot {
Some((s, _)) => !parking.is_free(*s),
None => true,
};
if need_new_spot {
*started_looking = true;
let current_lane = self.path.current_step().as_lane();
let candidates = parking.get_all_free_spots(
Position::new(current_lane, front),
vehicle,
target,
map,
);
let best =
if let Some((driving_pos, _)) = map.get_b(target).driving_connection(map) {
if driving_pos.lane() == current_lane {
let target_dist = driving_pos.dist_along();
// Closest to the building
candidates
.into_iter()
.min_by_key(|(_, pos)| (pos.dist_along() - target_dist).abs())
} else {
// Closest to the road endpoint, I guess
candidates
.into_iter()
.min_by_key(|(_, pos)| pos.dist_along())
}
} else {
// Closest to the road endpoint, I guess
candidates
.into_iter()
.min_by_key(|(_, pos)| pos.dist_along())
};
if let Some((new_spot, new_pos)) = best {
if let Some((t, p)) = trip_and_person {
events.push(Event::TripPhaseStarting(
t,
p,
Some(PathRequest::vehicle(
Position::new(current_lane, front),
new_pos,
PathConstraints::Car,
)),
TripPhaseType::Parking,
));
}
assert_eq!(new_pos.lane(), current_lane);
assert!(new_pos.dist_along() >= front);
*spot = Some((new_spot, new_pos.dist_along()));
} else {
if let Some((new_path_steps, new_spot, new_pos)) =
parking.path_to_free_parking_spot(current_lane, vehicle, target, map)
{
assert!(!new_path_steps.is_empty());
for step in new_path_steps {
self.path.add(step, map);
}
*spot = Some((new_spot, new_pos.dist_along()));
events.push(Event::PathAmended(self.path.clone()));
// TODO This path might not be the same as the one found here...
if let Some((t, p)) = trip_and_person {
events.push(Event::TripPhaseStarting(
t,
p,
Some(PathRequest::vehicle(
Position::new(current_lane, front),
new_pos,
PathConstraints::Car,
)),
TripPhaseType::Parking,
));
}
} else {
if let Some((_, p)) = trip_and_person {
events.push(Event::Alert(
AlertLocation::Person(p),
format!(
"{} can't find parking on {} or anywhere reachable from \
it. Possibly we're just totally out of parking space!",
vehicle.id, current_lane
),
));
}
*stuck_end_dist = Some(map.get_l(current_lane).length());
}
return Some(ActionAtEnd::GotoLaneEnd);
}
}
if spot.unwrap().1 == front {
Some(ActionAtEnd::StartParking(spot.unwrap().0))
} else {
None
}
}
Goal::BikeThenStop { ref goal } => {
if goal.sidewalk_pos.dist_along() == front {
Some(ActionAtEnd::StopBiking(goal.clone()))
} else {
None
}
}
Goal::FollowTransitRoute { end_dist } => {
if end_dist == front {
Some(ActionAtEnd::BusAtStop)
} else {
None
}
}
}
}
pub fn opportunistically_lanechange(
&mut self,
queues: &HashMap<Traversable, Queue>,
map: &Map,
handle_uber_turns: bool,
) {
// if we're already in the uber-turn, we're committed, but if we're about to enter one, lock
// in the best path through it now.
if handle_uber_turns && self.path.currently_inside_ut().is_some() {
return;
}
let mut segment = 0;
loop {
let (current_turn, next_lane) = {
let steps = self.path.get_steps();
if steps.len() < 5 + segment * 2 {
return;
}
match (steps[1 + segment * 2], steps[4 + segment * 2]) {
(PathStep::Turn(t), PathStep::Lane(l)) => (t, l),
_ => {
return;
}
}
};
let orig_target_lane = current_turn.dst;
let parent = map.get_parent(orig_target_lane);
let next_parent = map.get_l(next_lane).src_i;
let constraints = self.owner.vehicle_type.to_constraints();
let compute_cost = |turn1: &Turn, lane: LaneID| {
let (lt, lc, mut slow_lane) = turn1.penalty(constraints, map);
let (vehicles, mut bike) = queues[&Traversable::Lane(lane)].target_lane_penalty();
// The magic happens here. We have different penalties:
//
// 1) Are we headed towards a general purpose lane instead of a dedicated bike/bus
// lane?
// 2) Are there any bikes in the target lane? This ONLY matters if we're a car. If
// we're another bike, the speed difference won't matter.
// 3) IF we're a bike, are we headed to something other than the slow (rightmost in
// the US) lane?
// 4) Are there lots of vehicles stacked up in one lane?
// 5) Are we changing lanes?
//
// A linear combination of these penalties is hard to reason about. We mostly
// make our choice based on each penalty in order, breaking ties by moving onto the
// next thing. With one exception: To produce more realistic behavior, we combine
// `vehicles + lc` as one score to avoid switching lanes just to get around one car.
if self.owner.vehicle_type == VehicleType::Bike {
bike = 0;
} else {
slow_lane = 0;
}
(lt, bike, slow_lane, vehicles + lc)
};
// Look for other candidates, and assign a cost to each.
let mut original_cost = None;
let dir = map.get_l(orig_target_lane).dir;
let best = parent
.lanes
.iter()
.filter(|l| l.dir == dir && constraints.can_use(l, map))
.filter_map(|l| {
// Make sure we can go from this lane to next_lane.
let t1 = TurnID {
parent: current_turn.parent,
src: current_turn.src,
dst: l.id,
};
let turn1 = map.maybe_get_t(t1)?;
let t2 = TurnID {
parent: next_parent,
src: l.id,
dst: next_lane,
};
let turn2 = map.maybe_get_t(t2)?;
Some((turn1, l.id, turn2))
})
.map(|(turn1, l, turn2)| {
let cost = compute_cost(turn1, l);
if turn1.id == current_turn {
original_cost = Some(cost);
}
(cost, turn1, l, turn2)
})
.min_by_key(|(cost, _, _, _)| *cost);
if best.is_none() {
error!("no valid paths found: {:?}", self.owner);
return;
}
let (best_cost, turn1, best_lane, turn2) = best.unwrap();
if original_cost.is_none() {
error!("original_cost was unexpectedly None {:?}", self.owner);
return;
}
let original_cost = original_cost.unwrap();
// Only switch if the target queue is some amount better; don't oscillate
// unnecessarily.
if best_cost < original_cost {
debug!(
"changing lanes {:?} -> {:?}, cost: {:?} -> {:?}",
orig_target_lane, best_lane, original_cost, best_cost
);
self.path
.modify_step(1 + segment * 2, PathStep::Turn(turn1.id), map);
self.path
.modify_step(2 + segment * 2, PathStep::Lane(best_lane), map);
self.path
.modify_step(3 + segment * 2, PathStep::Turn(turn2.id), map);
}
if self.path.is_upcoming_uber_turn_component(turn2.id) {
segment += 1;
} else {
// finished
break;
}
}
}
pub fn can_lanechange(&self, from: LaneID, to: LaneID, map: &Map) -> bool {
let steps = self.path.get_steps();
if steps.len() < 3 {
return false;
}
assert_eq!(PathStep::Lane(from), steps[0]);
let current_turn = match steps[1] {
PathStep::Turn(t) => t,
_ => unreachable!(),
};
let next_lane = current_turn.dst;
assert_eq!(PathStep::Lane(next_lane), steps[2]);
map.maybe_get_t(TurnID {
parent: current_turn.parent,
src: to,
dst: next_lane,
})
.is_some()
}
pub fn confirm_lanechange(&mut self, to: LaneID, map: &Map) {
// No assertions, blind trust!
self.path.modify_step(0, PathStep::Lane(to), map);
let mut turn = match self.path.get_steps()[1] {
PathStep::Turn(t) => t,
_ => unreachable!(),
};
turn.src = to;
self.path.modify_step(1, PathStep::Turn(turn), map);
}
pub fn is_parking(&self) -> bool {
match self.goal {
Goal::ParkNearBuilding {
started_looking, ..
} => started_looking,
_ => false,
}
}
pub fn get_parking_spot_goal(&self) -> Option<&ParkingSpot> {
match self.goal {
Goal::ParkNearBuilding { ref spot, .. } => spot.as_ref().map(|(s, _)| s),
_ => None,
}
}
}